Suppr超能文献

效应量稳定的功效。

The power of effect size stabilization.

作者信息

Kowialiewski Benjamin

机构信息

Psychology & Neuroscience of Cognition Research Unit (PsyNCog), University of Liège, 4000, Liège, Belgium.

Fund for Scientific Research F.R.S.-FNRS, Brussels, Belgium.

出版信息

Behav Res Methods. 2024 Dec 10;57(1):7. doi: 10.3758/s13428-024-02549-3.

Abstract

Determining an appropriate sample size in psychological experiments is a common challenge, requiring a balance between maximizing the chance of detecting a true effect (minimizing false negatives) and minimizing the risk of observing an effect where none exists (minimizing false positives). A recent study proposes using effect size stabilization, a form of optional stopping, to define sample size without increasing the risk of false positives. In effect size stabilization, researchers monitor the effect size of their samples throughout the sampling process and stop sampling when the effect no longer varies beyond predefined thresholds. This study aims to improve our understanding of effect size stabilization properties. Simulations involving effect size stabilization are presented, with parametric modulation of the true effect in the population and the strictness of the stabilization rule. As previously demonstrated, the results indicate that optional stopping based on effect-size stabilization consistently yields unbiased samples over the long run. However, simulations also reveal that effect size stabilization does not guarantee the detection of a true effect in the population. Consequently, researchers adopting effect size stabilization put themselves at risk of increasing type 2 error probability. Instead of using effect-size stabilization procedures for testing, researchers should use them to reach accurate parameter estimates.

摘要

在心理学实验中确定合适的样本量是一项常见挑战,需要在最大化检测到真实效应的机会(最小化假阴性)和最小化观察到不存在的效应的风险(最小化假阳性)之间取得平衡。最近的一项研究提出使用效应量稳定化(一种序贯抽样形式)来定义样本量,而不增加假阳性风险。在效应量稳定化中,研究人员在整个抽样过程中监测样本的效应量,并在效应量不再超出预定义阈值变化时停止抽样。本研究旨在增进我们对效应量稳定化特性的理解。给出了涉及效应量稳定化的模拟,对总体中的真实效应和稳定化规则的严格程度进行了参数调制。如先前所示,结果表明基于效应量稳定化的序贯抽样从长远来看始终能产生无偏样本。然而,模拟也表明效应量稳定化并不能保证检测到总体中的真实效应。因此,采用效应量稳定化的研究人员面临增加Ⅱ类错误概率的风险。研究人员不应将效应量稳定化程序用于检验,而应使用它们来获得准确的参数估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验