Suppr超能文献

选择性停止:对贝叶斯主义者来说不是问题。

Optional stopping: no problem for Bayesians.

作者信息

Rouder Jeffrey N

出版信息

Psychon Bull Rev. 2014 Apr;21(2):301-8. doi: 10.3758/s13423-014-0595-4.

Abstract

Optional stopping refers to the practice of peeking at data and then, based on the results, deciding whether or not to continue an experiment. In the context of ordinary significance-testing analysis, optional stopping is discouraged, because it necessarily leads to increased type I error rates over nominal values. This article addresses whether optional stopping is problematic for Bayesian inference with Bayes factors. Statisticians who developed Bayesian methods thought not, but this wisdom has been challenged by recent simulation results of Yu, Sprenger, Thomas, and Dougherty (2013) and Sanborn and Hills (2013). In this article, I show through simulation that the interpretation of Bayesian quantities does not depend on the stopping rule. Researchers using Bayesian methods may employ optional stopping in their own research and may provide Bayesian analysis of secondary data regardless of the employed stopping rule. I emphasize here the proper interpretation of Bayesian quantities as measures of subjective belief on theoretical positions, the difference between frequentist and Bayesian interpretations, and the difficulty of using frequentist intuition to conceptualize the Bayesian approach.

摘要

选择性停止是指查看数据,然后根据结果决定是否继续进行实验的做法。在普通的显著性检验分析中,不鼓励进行选择性停止,因为这必然会导致I型错误率高于名义值。本文探讨了选择性停止对于使用贝叶斯因子的贝叶斯推断是否存在问题。开发贝叶斯方法的统计学家认为不存在问题,但这种观点受到了Yu、Sprenger、Thomas和Dougherty(2013年)以及Sanborn和Hills(2013年)近期模拟结果的挑战。在本文中,我通过模拟表明,贝叶斯量的解释并不取决于停止规则。使用贝叶斯方法的研究人员在自己的研究中可以采用选择性停止,并且无论所采用的停止规则如何,都可以对二次数据进行贝叶斯分析。我在此强调对贝叶斯量作为对理论立场主观信念度量的正确解释、频率主义和贝叶斯解释之间的差异,以及使用频率主义直觉来概念化贝叶斯方法的困难。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验