Gu Yanan, Jin Kaipu, Gao Shanshan, Sun Wei, Yin Minyan, Han Jing, Zhang Yunfei, Wang Xiaolin, Zeng Mengsu, Sheng Ruofan
Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
Shanghai Institute of Medical Imaging, Shanghai 200032, China.
Br J Radiol. 2025 Feb 1;98(1166):210-219. doi: 10.1093/bjr/tqae193.
Developing a nomogram integrating MR elastography (MRE)-based tumour stiffness and contrast-enhanced MRI in identifying cytokeratin 19 (CK19) status of hepatocellular carcinoma (HCC) preoperatively.
One hundred twenty CK19-negative HCC and 39 CK19-positive HCC patients undergoing curative resection were prospectively evaluated. All received MRE and contrast-enhanced MRI. Clinical and MRI tumour features were compared. Univariate and multivariate logistic regression analyses identified independent predictors for CK19 status. Receiver operating characteristic curve analysis evaluated diagnostic performance. A nomogram was established with calibration and decision curve analysis.
Multivariate analysis revealed serum alpha fetoprotein (AFP) level (P < 0.001), targetoid appearance (P = 0.007), and tumour stiffness (P = 0.011) as independent significant variables for CK19-positive HCC. The area under the curve for tumour stiffness was 0.729 (95% confidence interval [CI] 0.653, 0.796). Combining these features, a nomogram-based model achieved an area under the curve value of 0.844 (95% CI 0.778, 0.897), with sensitivity, specificity, and accuracy of 76.92%, 85.00%, and 83.02%, respectively. Calibration and decision curve analyses demonstrated good agreement and optimal net benefit.
MRE-measured tumour stiffness aids in predicting CK19 status in HCC. The combined nomogram incorporating tumour stiffness, targetoid appearance, and AFP provides a reliable biomarker for CK19-positive HCC.
MRE-measured tumour stiffness can be used to predict CK19 status in HCC. The nomogram, which integrates tumour stiffness, targetoid appearance, and AFP levels, has shown improved diagnostic performance. It offers a comprehensive preoperative tool for clinical decision-making, further advancing personalized treatment strategies in HCC management.
开发一种列线图,整合基于磁共振弹性成像(MRE)的肿瘤硬度和对比增强磁共振成像,以术前识别肝细胞癌(HCC)的细胞角蛋白19(CK19)状态。
对120例接受根治性切除的CK19阴性HCC患者和39例CK19阳性HCC患者进行前瞻性评估。所有患者均接受MRE和对比增强磁共振成像。比较临床和磁共振成像肿瘤特征。单因素和多因素逻辑回归分析确定CK19状态的独立预测因素。受试者操作特征曲线分析评估诊断性能。通过校准和决策曲线分析建立列线图。
多因素分析显示血清甲胎蛋白(AFP)水平(P < 0.001)、类靶征(P = 0.007)和肿瘤硬度(P = 0.011)是CK19阳性HCC的独立显著变量。肿瘤硬度的曲线下面积为0.729(95%置信区间[CI] 0.653,0.796)。结合这些特征,基于列线图的模型曲线下面积值为0.844(95%CI 0.778,0.897),敏感性、特异性和准确性分别为76.92%、85.00%和83.02%。校准和决策曲线分析显示出良好的一致性和最佳净效益。
MRE测量的肿瘤硬度有助于预测HCC的CK19状态。结合肿瘤硬度、类靶征和AFP的联合列线图为CK19阳性HCC提供了可靠的生物标志物。
MRE测量的肿瘤硬度可用于预测HCC的CK19状态。整合肿瘤硬度、类靶征和AFP水平的列线图显示出改善的诊断性能。它为临床决策提供了一种全面的术前工具,进一步推进了HCC管理中的个性化治疗策略。