Suppr超能文献

一种用于临床F-FDG全身PET的基于Patlak的改进K参数成像方法。

An improved Patlak-based Kparametric imaging approach for clinicalF-FDG total-body PET.

作者信息

Gu Wenjian, Zhu Zhanshi, Liu Ze, Wang Yihan, Li Yanxiao, Xu Tianyi, Liu Weiping, Wang Kuanquan, Luo Gongning, Zhou Yun

机构信息

Faculty of Computing, Harbin Institute of Technology, No. 92, Xidazhi Street, Nangang District, Harbin, 150001, CHINA.

Faculty of Computing, Harbin Institute of Technology, No. 92, Xidazhi Street, Nangang District, Harbin City, Heilongjiang Province, China, Harbin, 150001, CHINA.

出版信息

Phys Med Biol. 2024 Dec 10. doi: 10.1088/1361-6560/ad9ce4.

Abstract

OBJECTIVE

The objective is to generate reliable Ki parametric images from 18F-FDG total-body PET with clinically acceptable scan durations using Patlak and shallow machine learning algorithms, under conditions of limited computational and data resources.

APPROACH

We proposed a robust and fast algorithm named Patlak-KXD to generate Ki images from dynamic PET images with shortened scan durations. In the training phase, K-means is employed to generate a Ki-balanced training dataset. Subsequently, XGBoost is utilized to learn the mapping relationship between the tissue-to-blood standardized uptake ratio (SUR) time curves and Patlak-based Ki values using this balanced dataset. In the prediction phase, the trained XGBoost can generate Ki images by calculating the Ki values from voxel-based SUR time curves obtained from the dynamic images. We compared the accuracy of Ki images generated by both the Patlak-KXD and the traditional Patlak methods across a range of shortened scan durations, and the differences in Ki images generated by the XGBoost model using static (Patlak-KXS) and dynamic PET inputs.

MAIN RESULTS

The Ki images generated by the Patlak-KXD from just a 4-minute (56-60 minutes) dynamic 18F-FDG total-body PET scan are comparable to those generated by the traditional Patlak method using 40-minute (20-60 minutes) dynamic PET images, as demonstrated by a normalized mean square error of 0.13 and a Pearson's correlation coefficient of 0.94 on average. The Ki images generated by the Patlak-KXD is robust to the scan duration, and the quality of Ki images generated from Patlak-KXD is superior to those from Patlak-KXS as scan duration > 10 minutes.

SIGNIFICANCE

Reliable Ki images can be rapidly generated using shallow machine learning algorithms from dynamic 18F-FDG total-body PET scans with durations as short as four minutes. This total-body Ki parametric imaging method has potential to be used in clinical nuclear medicine and molecular imaging.

摘要

目的

目标是在计算和数据资源有限的条件下,使用Patlak和浅层机器学习算法,从18F-FDG全身PET生成具有临床可接受扫描时长的可靠Ki参数图像。

方法

我们提出了一种名为Patlak-KXD的稳健快速算法,用于从缩短扫描时长的动态PET图像生成Ki图像。在训练阶段,采用K均值算法生成一个Ki平衡训练数据集。随后,利用XGBoost使用该平衡数据集学习组织与血液标准化摄取值(SUR)时间曲线与基于Patlak的Ki值之间的映射关系。在预测阶段,经过训练的XGBoost可以通过从动态图像获得的基于体素的SUR时间曲线计算Ki值来生成Ki图像。我们比较了Patlak-KXD和传统Patlak方法在一系列缩短扫描时长下生成的Ki图像的准确性,以及XGBoost模型使用静态(Patlak-KXS)和动态PET输入生成的Ki图像的差异。

主要结果

Patlak-KXD从仅4分钟(56 - 60分钟)的动态18F-FDG全身PET扫描生成的Ki图像,与传统Patlak方法使用40分钟(20 - 60分钟)动态PET图像生成的Ki图像相当,平均归一化均方误差为0.13,皮尔逊相关系数为0.94。Patlak-KXD生成的Ki图像对扫描时长具有鲁棒性,并且当扫描时长>10分钟时,Patlak-KXD生成的Ki图像质量优于Patlak-KXS生成的图像。

意义

使用浅层机器学习算法可以从时长仅为4分钟的动态18F-FDG全身PET扫描中快速生成可靠的Ki图像。这种全身Ki参数成像方法有潜力应用于临床核医学和分子成像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验