Suppr超能文献

用于基因组解读的结构变异注释工具的系统评估。

Systematic assessment of structural variant annotation tools for genomic interpretation.

作者信息

Liu Xuanshi, Gu Lei, Hao Chanjuan, Xu Wenjian, Leng Fei, Zhang Peng, Li Wei

机构信息

Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Genetics and Birth Defects Control Center, National Center for Children's Health; Beijing Children's Hospital, Capital Medical University, Beijing, China.

Epigenetics Laboratory, Max-Planck Institute for Heart and Lung Research, Cardiopulmonary Institute, Bad Nauheim, Germany.

出版信息

Life Sci Alliance. 2024 Dec 10;8(3). doi: 10.26508/lsa.202402949. Print 2025 Mar.

Abstract

Structural variants (SVs) over 50 base pairs play a significant role in phenotypic diversity and are associated with various diseases, but their analysis is complex and resource-intensive. Numerous computational tools have been developed for SV prioritization, yet their effectiveness in biomedicine remains unclear. Here we benchmarked eight widely used SV prioritization tools, categorized into knowledge-driven (AnnotSV, ClassifyCNV) and data-driven (CADD-SV, dbCNV, StrVCTVRE, SVScore, TADA, XCNV) groups in accordance with the ACMG guidelines. We assessed their accuracy, robustness, and usability across diverse genomic contexts, biological mechanisms and computational efficiency using seven carefully curated independent datasets. Our results revealed that both groups of methods exhibit comparable effectiveness in predicting SV pathogenicity, although performance varies among tools, emphasizing the importance of selecting the appropriate tool based on specific research purposes. Furthermore, we pinpointed the potential improvement of expanding these tools for future applications. Our benchmarking framework provides a crucial evaluation method for SV analysis tools, offering practical guidance for biomedical research and facilitating the advancement of better genomic research tools.

摘要

超过50个碱基对的结构变异(SVs)在表型多样性中起重要作用,并与多种疾病相关,但其分析复杂且资源密集。已经开发了许多用于SV优先级排序的计算工具,但其在生物医学中的有效性仍不明确。在这里,我们对八种广泛使用的SV优先级排序工具进行了基准测试,根据美国医学遗传学与基因组学学会(ACMG)指南将其分为知识驱动型(AnnotSV、ClassifyCNV)和数据驱动型(CADD-SV、dbCNV、StrVCTVRE、SVScore、TADA、XCNV)两组。我们使用七个精心策划的独立数据集评估了它们在不同基因组背景、生物学机制和计算效率方面的准确性、稳健性和可用性。我们的结果表明,尽管工具之间的性能有所不同,但两组方法在预测SV致病性方面表现出相当的有效性,强调了根据特定研究目的选择合适工具的重要性。此外,我们指出了扩展这些工具以用于未来应用的潜在改进方向。我们的基准测试框架为SV分析工具提供了关键的评估方法,为生物医学研究提供了实用指导,并促进了更好的基因组研究工具的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10bd/11632063/b4b6cb39ea28/LSA-2024-02949_Fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验