Tian Jingjing, Xu Shuofei, Wu Yujing, Shi Yaning, Duan Yu, Li Zihui, Cao Hujing, Zeng Jiarui, Shen Tingting, Pan Leiqing, Xin Zhihong, Fang Wanping, Zhu Xujun
Tea Research Institute, Key Laboratory of Food Processing and Quality Control, State Key Lab of Meat Quality Control and Cultured Meat Development, Nanjing Agricultural University, Nanjing 210095, China.
School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
Food Res Int. 2025 Jan;199:115394. doi: 10.1016/j.foodres.2024.115394. Epub 2024 Nov 22.
To safeguard the legal rights of tea enterprises and promote sustainable development in the tea industry, this study proposes a rapid, non-destructive method for authenticating white tea vintages based on the hypothesis that the appearance, taste and aroma cannot be simultaneously replicated in counterfeit teas. Using visible-near infrared hyperspectral imaging, this three-in-one appearance-taste-aroma method was applied to Bai Mudan white tea, produced from the Jinggu Dabai Tea cultivar harvested in 2020, 2021 and 2022. Hyperspectral imaging captured appearance data from dry samples of different vintages, with preprocessing using multiplicative scatter correction (MSC) and standard normal variate (SNV). Partial least squares regression (PLSR) and support vector regression (SVR) models were used to explore correlations between appearance data, electronic tongue-measured taste and electronic nose-measured aroma. The results showed that appearance data can predict tea infusion taste (0.6540 < R < 0.8873) and aroma (0.8880 < R < 0.9703) across vintages. Further integration of high-performance liquid chromatography (HPLC), high-performance liquid chromatography (GC-IMS) and regression models revealed that appearance-based spectral data predict taste through gallic acid (GA), catechin (C) and gallocatechin gallate (GCG), and predict aroma via styrene, 2,5-dimethylpyrazine and 2-octanone. This non-invasive method, leveraging visible-near infrared spectroscopy, provides a standardized approach for white tea vintage authentication by integrating appearance, taste and aroma assessments.
为保障茶叶企业的合法权益,促进茶叶行业的可持续发展,本研究基于假冒茶叶无法同时复制外观、口感和香气这一假设,提出了一种快速、无损的白茶年份鉴定方法。利用可见 - 近红外高光谱成像技术,这种三合一的外观 - 口感 - 香气方法应用于由2020年、2021年和2022年采摘的景谷大白茶品种制成的白牡丹白茶。高光谱成像获取了不同年份干样的外观数据,并使用多元散射校正(MSC)和标准正态变量变换(SNV)进行预处理。偏最小二乘回归(PLSR)和支持向量回归(SVR)模型用于探索外观数据、电子舌测量的口感和电子鼻测量的香气之间的相关性。结果表明,外观数据可以预测不同年份茶叶冲泡后的口感(0.6540 < R < 0.8873)和香气(0.8880 < R < 0.9703)。进一步整合高效液相色谱(HPLC)、气相色谱 - 离子迁移谱(GC - IMS)和回归模型发现,基于外观的光谱数据通过没食子酸(GA)、儿茶素(C)和没食子儿茶素没食子酸酯(GCG)预测口感,并通过苯乙烯、2,5 - 二甲基吡嗪和2 - 辛酮预测香气。这种利用可见 - 近红外光谱的非侵入性方法,通过整合外观、口感和香气评估,为白茶年份鉴定提供了一种标准化方法。