Suppr超能文献

质心状态在整个站立平衡恢复过程中产生多关节扭矩。

Center of mass states render multijoint torques throughout standing balance recovery.

作者信息

Jakubowski Kristen L, Martino Giovanni, Beck Owen N, Sawicki Gregory S, Ting Lena H

机构信息

Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, United States.

Department of Biomedical Sciences, University of Padova, Padua, Italy.

出版信息

J Neurophysiol. 2025 Jan 1;133(1):206-221. doi: 10.1152/jn.00367.2024. Epub 2024 Dec 10.

Abstract

Successful reactive balance control requires coordinated modulation of hip, knee, and ankle torques. Stabilizing joint torques arise from neurally-mediated feedforward tonic muscle activation that modulates muscle short-range stiffness, which provides instantaneous "mechanical feedback" to the perturbation. In contrast, neural feedback pathways activate muscles in response to sensory input, generating joint torques after a delay. However, the specific contributions from feedforward and feedback pathways to the balance-correcting torque response are poorly understood. As feedforward- and feedback-mediated torque responses to balance perturbations act at different delays, we modified the sensorimotor response model (SRM), previously used to analyze the muscle activation response, to reconstruct joint torques using parallel feedback loops. Each loop is driven by the same information, center of mass (CoM) kinematics, but each loop has an independent delay. We evaluated whether a torque-SRM could decompose the reactive torques during balance-correcting responses to backward support surface translations at four magnitudes into the instantaneous "mechanical feedback" torque modulated by feedforward neural commands before the perturbation and neurally-delayed feedback components. The SRM accurately reconstructed torques at the hip, knee, and ankle, across all perturbation magnitudes ( > 0.84 and VAF > 0.83). Moreover, the hip and knee exhibited feedforward and feedback components, while the ankle only exhibited feedback components. The lack of a feedforward component at the ankle may occur because the compliance of the Achilles tendon attenuates muscle short-range stiffness. Our model may provide a framework for evaluating changes in the feedforward and feedback contributions to balance that occur due to aging, injury, or disease. Reactive balance control requires coordination of neurally-mediated feedforward and feedback pathways to generate stabilizing joint torques at the hip, knee, and ankle. Using a sensorimotor response model, we decomposed reactive joint torques into feedforward and feedback contributions based on delays relative to the center of mass kinematics. Responses across joints were driven by the same signals, but contributions from feedforward versus feedback pathways differed, likely due to differences in musculotendon properties between proximal and distal muscles.

摘要

成功的反应性平衡控制需要对髋、膝和踝关节扭矩进行协调调节。稳定关节扭矩源于神经介导的前馈紧张性肌肉激活,这种激活调节肌肉的短程刚度,从而为扰动提供即时的“机械反馈”。相比之下,神经反馈通路会根据感觉输入激活肌肉,在延迟后产生关节扭矩。然而,前馈和反馈通路对平衡校正扭矩反应的具体贡献仍知之甚少。由于前馈和反馈介导的对平衡扰动的扭矩反应在不同延迟下起作用,我们修改了之前用于分析肌肉激活反应的感觉运动反应模型(SRM),以使用并行反馈回路重建关节扭矩。每个回路由相同的信息,即质心(CoM)运动学驱动,但每个回路都有独立的延迟。我们评估了扭矩-SRM是否能够将在四种幅度的向后支撑面平移的平衡校正反应过程中的反应性扭矩分解为扰动前由前馈神经指令调制的即时“机械反馈”扭矩和神经延迟反馈成分。SRM在所有扰动幅度下(相关性系数>0.84,方差解释率>VAF>0.83)都准确地重建了髋、膝和踝关节的扭矩。此外,髋部和膝部表现出前馈和反馈成分,而踝部仅表现出反馈成分。踝部缺乏前馈成分可能是因为跟腱的顺应性会减弱肌肉的短程刚度。我们的模型可能为评估由于衰老、损伤或疾病导致的前馈和反馈对平衡贡献的变化提供一个框架。反应性平衡控制需要神经介导的前馈和反馈通路的协调,以在髋、膝和踝关节产生稳定关节扭矩。使用感觉运动反应模型,我们根据相对于质心运动学的延迟将反应性关节扭矩分解为前馈和反馈贡献。关节的反应由相同的信号驱动,但前馈与反馈通路的贡献不同,这可能是由于近端和远端肌肉之间的肌腱特性差异所致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验