Suppr超能文献

通过硼对钌催化剂进行结构修饰以增强丙烷脱氢反应

The structural decoration of Ru catalysts by boron for enhanced propane dehydrogenation.

作者信息

Yang Tianxing, Ma Rui, Li Jiale, Liu Yanan, Feng Junting, He Yufei, Li Dianqing

机构信息

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.

Department of Materials and Chemical Engineering, Lianyungang Technical College, Lianyungang, Jiangsu 222006, China.

出版信息

Fundam Res. 2022 Apr 28;4(5):1147-1156. doi: 10.1016/j.fmre.2022.04.012. eCollection 2024 Sep.

Abstract

Propane dehydrogenation (PDH) is an efficient technology for the direct production of propylene. Nevertheless, current PDH catalysts mainly rely on precious Pt or toxic Cr and especially undergo severe coke deposition. Herein, we report a Ru catalyst decorated by boron species (Ru-3B/AlO), which exhibits high catalytic performance for PDH. HAADF-STEM, EELS, and CO-FTIR characterization are used to identify the surface structure of the Ru active component, which shows that the high-energy unsaturated coordination sites, including corners, edges and step atoms for Ru-3B/AlO are appropriately modified by BO species. The encapsulation of high-energy active sites prone to C-C cracking and deep dehydrogenation leads to higher propylene selectivity (> 95%) and strong carbon resistance ( 0.0007 min) over Ru-3B/AlO. The XPS and H-TPR results show that the migration of B species is driven by the reduction of BO to BO and that the coating degree of Ru particles is controlled by the chemical valance of Ru species.

摘要

丙烷脱氢(PDH)是一种直接生产丙烯的高效技术。然而,目前的PDH催化剂主要依赖于贵金属Pt或有毒的Cr,并且特别容易发生严重的积炭。在此,我们报道了一种由硼物种修饰的Ru催化剂(Ru-3B/AlO),其对PDH表现出高催化性能。使用高角度环形暗场扫描透射电子显微镜(HAADF-STEM)、电子能量损失谱(EELS)和一氧化碳傅里叶变换红外光谱(CO-FTIR)表征来确定Ru活性组分的表面结构,结果表明Ru-3B/AlO的高能不饱和配位位点,包括角、边和台阶原子,被BO物种适当修饰。高能活性位点的封装易于发生C-C裂解和深度脱氢,这使得Ru-3B/AlO具有更高的丙烯选择性(>95%)和强抗炭性能(0.0007分钟)。X射线光电子能谱(XPS)和氢气程序升温还原(H-TPR)结果表明,B物种的迁移是由BO还原为BO所驱动的,并且Ru颗粒的包覆程度由Ru物种的化学价态控制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ba/11630713/81e0e7f3667a/ga1.jpg

相似文献

1
The structural decoration of Ru catalysts by boron for enhanced propane dehydrogenation.
Fundam Res. 2022 Apr 28;4(5):1147-1156. doi: 10.1016/j.fmre.2022.04.012. eCollection 2024 Sep.
2
Construction of a Unique Structure of Ru Sites in the RuP Structure for Propane Dehydrogenation.
ACS Appl Mater Interfaces. 2021 Jul 21;13(28):33045-33055. doi: 10.1021/acsami.1c07842. Epub 2021 Jul 7.
3
Performance and Mechanism of Catalytic Propane Dehydrogenation over PtK/θ-AlO Catalysts.
ChemSusChem. 2025 May 6:e2402759. doi: 10.1002/cssc.202402759.
4
Pt-ZnO Interfacial Effect on the Performance of Propane Dehydrogenation and Mechanism Study.
ACS Nano. 2024 Dec 24;18(51):34671-34682. doi: 10.1021/acsnano.4c10030. Epub 2024 Dec 11.
6
Evolution of the Active Phase of Pt/Sn-AlO Catalysts During Acidic Impregnation and Their Use in Propane Dehydrogenation.
ACS Appl Mater Interfaces. 2024 Sep 11;16(36):47773-47783. doi: 10.1021/acsami.4c11358. Epub 2024 Aug 28.
8
Doubly Decorated Platinum-Gallium Intermetallics as Stable Catalysts for Propane Dehydrogenation.
Angew Chem Int Ed Engl. 2021 Sep 1;60(36):19715-19719. doi: 10.1002/anie.202107210. Epub 2021 Jul 26.
9
DFT study of propane dehydrogenation on Pt catalyst: effects of step sites.
Phys Chem Chem Phys. 2011 Feb 28;13(8):3257-67. doi: 10.1039/c0cp00341g. Epub 2011 Jan 21.
10

引用本文的文献

1
The role of pentacoordinate Al sites of Pt/AlO catalysts in propane dehydrogenation.
Fundam Res. 2022 Sep 10;4(6):1480-1487. doi: 10.1016/j.fmre.2022.08.020. eCollection 2024 Nov.

本文引用的文献

2
Stable and selective catalysts for propane dehydrogenation operating at thermodynamic limit.
Science. 2021 Jul 9;373(6551):217-222. doi: 10.1126/science.abg7894.
3
Construction of a Unique Structure of Ru Sites in the RuP Structure for Propane Dehydrogenation.
ACS Appl Mater Interfaces. 2021 Jul 21;13(28):33045-33055. doi: 10.1021/acsami.1c07842. Epub 2021 Jul 7.
4
Doubly Decorated Platinum-Gallium Intermetallics as Stable Catalysts for Propane Dehydrogenation.
Angew Chem Int Ed Engl. 2021 Sep 1;60(36):19715-19719. doi: 10.1002/anie.202107210. Epub 2021 Jul 26.
6
Subsurface-Regulated PtGa Nanoparticles Confined in Silicalite-1 for Propane Dehydrogenation.
ACS Appl Mater Interfaces. 2021 Apr 14;13(14):16259-16266. doi: 10.1021/acsami.0c22865. Epub 2021 Apr 5.
8
Propane dehydrogenation: catalyst development, new chemistry, and emerging technologies.
Chem Soc Rev. 2021 Mar 15;50(5):3315-3354. doi: 10.1039/d0cs00814a.
9
Size-dependent strong metal-support interaction in TiO supported Au nanocatalysts.
Nat Commun. 2020 Nov 16;11(1):5811. doi: 10.1038/s41467-020-19484-4.
10
Reaction-Induced Strong Metal-Support Interactions between Metals and Inert Boron Nitride Nanosheets.
J Am Chem Soc. 2020 Oct 7;142(40):17167-17174. doi: 10.1021/jacs.0c08139. Epub 2020 Sep 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验