Suppr超能文献

密集混合交通条件下的双水平匝道合并协调

Bi-level ramp merging coordination for dense mixed traffic conditions.

作者信息

Zhu Jie, Gao Kun, Li Hao, He Zijing, Monreal Cristina Olaverri

机构信息

Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg 41296, Sweden.

College of Transportation Engineering, Tongji University, Shanghai 201804, China.

出版信息

Fundam Res. 2023 Apr 26;4(5):992-1008. doi: 10.1016/j.fmre.2023.03.015. eCollection 2024 Sep.

Abstract

Connected and Autonomous Vehicles (CAVs) hold great potential to improve traffic efficiency, emissions and safety in freeway on-ramp bottlenecks through coordination between mainstream and on-ramp vehicles. This study proposes a bi-level coordination strategy for freeway on-ramp merging of mixed traffic consisting of CAVs and human-driven vehicles (HDVs) to optimize the overall traffic efficiency and safety in congested traffic scenarios at the traffic flow level instead of platoon levels. The macro level employs an optimization model based on fundamental diagrams and shock wave theories to make optimal coordination decisions, including optimal minimum merging platoon size to trigger merging coordination and optimal coordination speed, based on macroscopic traffic state in mainline and ramp (i.e., traffic volume and penetration rates of CAVs). Furthermore, the micro level determines the real platoon size in each merging cycle as per random arrival patterns and designs the coordinated trajectories of the mainline facilitating vehicle and ramp platoon. A receding horizon scheme is implemented to accommodate human drivers' stochastics as well. The developed bi-level strategy is tested in terms of improving efficiency and safety in a simulation-based case study under various traffic volumes and CAV penetration rates. The results show the proposed coordination addresses the uncertainties in mixed traffic as expected and substantially improves ramp merging operation in terms of merging efficiency and traffic robustness, and reducing collision risk and emissions, especially under high traffic volume conditions.

摘要

联网自动驾驶汽车(CAV)通过主流车辆与匝道车辆之间的协调,在改善高速公路匝道瓶颈处的交通效率、排放和安全方面具有巨大潜力。本研究提出了一种用于由CAV和人类驾驶车辆(HDV)组成的混合交通的高速公路匝道合并双层协调策略,以在交通流层面而非车队层面优化拥堵交通场景下的整体交通效率和安全性。宏观层面采用基于基本图和冲击波理论的优化模型,根据主线和匝道的宏观交通状态(即交通流量和CAV渗透率)做出最优协调决策,包括触发合并协调的最优最小合并车队规模和最优协调速度。此外,微观层面根据随机到达模式确定每个合并周期中的实际车队规模,并设计主线辅助车辆和匝道车队的协调轨迹。还实施了滚动时域方案以适应人类驾驶员的随机性。在各种交通流量和CAV渗透率下的基于模拟的案例研究中,对所开发的双层策略在提高效率和安全性方面进行了测试。结果表明,所提出的协调按预期解决了混合交通中的不确定性,并在合并效率和交通稳健性方面显著改善了匝道合并操作,降低了碰撞风险和排放,特别是在高交通流量条件下。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cf5/11630687/8642d891398a/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验