Steijvers Emma, Shi Yunshong, Lu Hong, Zhang Weixin, Zhang Yitian, Zhao Feihu, Wang Baichuan, Hughes Louise, Barralet Jake E, Degli-Alessandrini Giulia, Kraev Igor, Johnston Richard, Shao Zengwu, Ebetino Frank H, Triffitt James T, Russell R Graham G, Deganello Davide, Cao Xu, Xia Zhidao
Centre for Nanohealth, Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University, Swansea, United Kingdom.
School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
Bioact Mater. 2024 Nov 26;45:257-273. doi: 10.1016/j.bioactmat.2024.11.025. eCollection 2025 Mar.
Biomaterials are widely used as orthopaedic implants and bone graft substitutes. We aimed to develop a rapid osteogenic assessment method using a murine tibial periosteal ossification model to evaluate the bone formation/remodelling potential of a biomaterial within 2-4 weeks. A novel hydroxyapatite/aragonite (HAA) biomaterial was implanted into C57BL/6 mice juxtaskeletally between the tibia and tibialis anterior muscle. Rapid intramembranous bone formation was observed at 14 days, with 4- to 8-fold increases in bone thickness and callus volume in comparison with sham-operated animals ( < 0.0001), followed by bone remodelling and a new layer of cortical bone formation by 28 days after implantation. The addition of zoledronate, a clinically-utilised bisphosphonate, to HAA, promoted significantly more new bone formation than HAA alone over 28 days ( < 0.01). The osteogenic potential of HAA was further confirmed by implanting into a 3.5 mm diameter femoral cancellous bone defect in rats and a 5 mm diameter femoral cortical bone defect in minipigs. To understand the biodegradation and the cellular activity at the cell/biomaterial interfaces, non-decalcified specimens were resin embedded and sections subjected to combined scanning electron microscopy (SEM)/electron backscatter diffraction (EBSD)/energy dispersive X-ray spectrometry (EDS) analysis. We conclude that murine tibial periosteal ossification is a novel method for rapid assessment of the interaction of bioactive materials with osteogenic tissues. This study also highlights that combining calcium carbonate with hydroxyapatite enhances biodegradation and osteogenesis.
生物材料被广泛用作骨科植入物和骨移植替代物。我们旨在开发一种快速成骨评估方法,利用小鼠胫骨骨膜骨化模型在2至4周内评估生物材料的骨形成/重塑潜力。一种新型羟基磷灰石/文石(HAA)生物材料被植入C57BL/6小鼠胫骨旁,位于胫骨和胫骨前肌之间。在第14天观察到快速的膜内骨形成,与假手术动物相比,骨厚度和骨痂体积增加了4至8倍(<0.0001),随后在植入后28天进行骨重塑并形成新的皮质骨层。在HAA中添加临床上使用的双膦酸盐唑来膦酸,在28天内比单独使用HAA显著促进了更多的新骨形成(<0.01)。通过将HAA植入大鼠直径3.5毫米的股骨松质骨缺损和小型猪直径5毫米的股骨皮质骨缺损中,进一步证实了HAA的成骨潜力。为了了解细胞/生物材料界面的生物降解和细胞活性,将未脱钙的标本进行树脂包埋,并对切片进行联合扫描电子显微镜(SEM)/电子背散射衍射(EBSD)/能量色散X射线光谱(EDS)分析。我们得出结论,小鼠胫骨骨膜骨化是一种快速评估生物活性材料与成骨组织相互作用的新方法。这项研究还强调,将碳酸钙与羟基磷灰石结合可增强生物降解和成骨作用。