Li Yingcheng, Xin Tao, Qiu Chudan, Li Keren, Liu Gangqin, Li Jun, Wan Yidun, Lu Dawei
State Key Laboratory of Surface Physics, Department of Physics, Center for Field Theory and Particle Physics, and Institute for Nanoelectronic devices and Quantum computing, Fudan University, Shanghai 200433, China.
Shanghai Qi Zhi Institute, Shanghai 200030, China.
Fundam Res. 2022 Feb 17;3(2):229-236. doi: 10.1016/j.fmre.2021.11.036. eCollection 2023 Mar.
Among existing approaches to holonomic quantum computing, the adiabatic holonomic quantum gates (HQGs) suffer errors due to decoherence, while the non-adiabatic HQGs either require additional Hilbert spaces or are difficult to scale. Here, we report a systematic, scalable approach based on dynamical invariants to realize HQGs without using additional Hilbert spaces. While presenting the theoretical framework of our approach, we design and experimentally evaluate single-qubit and two-qubits HQGs for the nuclear magnetic resonance system. The single-qubit gates acquire average fidelity 0.9972 by randomized benchmarking, and the controlled-NOT gate acquires fidelity 0.9782 by quantum process tomography. Our approach is also platform-independent, and thus may open a way to large-scale holonomic quantum computation.
在现有的完整量子计算方法中,绝热完整量子门(HQG)由于退相干而产生误差,而非绝热HQG要么需要额外的希尔伯特空间,要么难以扩展。在此,我们报告一种基于动力学不变量的系统、可扩展方法,以在不使用额外希尔伯特空间的情况下实现HQG。在介绍我们方法的理论框架时,我们设计并通过实验评估了用于核磁共振系统的单量子比特和双量子比特HQG。单量子比特门通过随机基准测试获得平均保真度0.9972,受控非门通过量子过程层析成像获得保真度0.9782。我们的方法也是与平台无关的,因此可能为大规模完整量子计算开辟一条道路。