Zhang Quan, Yang Chao, Chen Yangshen, Yan Yaqin, Kan Miao, Wang Huining, Lv Ximeng, Han Qing, Zheng Gengfeng
Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China.
Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
Angew Chem Int Ed Engl. 2025 Feb 10;64(7):e202419282. doi: 10.1002/anie.202419282. Epub 2024 Dec 19.
Photocatalytic CH oxidation to ethanol with high selectivity is attractive but substantially challenging. The activation of inert C-H bonds at ambient conditions requires highly reactive oxygen species like hydroxyl radicals (⋅OH), while the presence of those oxidative species also facilitates fast formation of C products, instead of the kinetically sluggish C-C coupling to produce ethanol. Herein, we developed a BiVO photocatalyst with surface functionalization of Au nanoparticles (BiVO@Au), which not only enables photogeneration of ⋅OH to activate CH into ⋅CH, but also in situ consumes those ⋅OH species to retard their further attack on ⋅CH, resulting in an enhanced ⋅CH/⋅OH ratio and facilitating C-C coupling toward ethanol. The ⋅CH/⋅OH ratio is further improved by transporting CH via a gas-diffusion layer to the photocatalytic interface, leading to even higher ethanol selectivity and production rates. At ambient conditions and without photosensitizers or sacrificial agents, the BiVO@Au photocatalyst exhibited an outstanding CH-to-ethanol conversion performance, including a peak ethanol yield of 680 μmol ⋅ g ⋅ h, a high selectivity of 86 %, and a stable photoconversion of >100 h, substantially exceeding most of the previous reports. Our work suggests an attractive approach of in situ generation and modulation of the ⋅OH levels for photocatalytic CH conversion toward multi-carbon products.
将光催化甲烷氧化为乙醇并具有高选择性很有吸引力,但极具挑战性。在环境条件下激活惰性碳氢键需要高活性氧物种,如羟基自由基(⋅OH),而这些氧化物种的存在也促进了碳产物的快速形成,而不是动力学上缓慢的碳-碳偶联生成乙醇。在此,我们开发了一种表面功能化有金纳米颗粒的钒酸铋光催化剂(BiVO@Au),它不仅能使光生羟基自由基将甲烷激活为甲基自由基(⋅CH),还能原位消耗这些羟基自由基物种,以阻止它们对甲基自由基的进一步攻击,从而提高甲基自由基与羟基自由基的比例,并促进碳-碳偶联生成乙醇。通过气体扩散层将甲烷传输到光催化界面,甲基自由基与羟基自由基的比例进一步提高,从而实现更高的乙醇选择性和产率。在环境条件下,且无需光敏剂或牺牲剂,BiVO@Au光催化剂展现出卓越的甲烷到乙醇的转化性能,包括680 μmol ⋅ g ⋅ h的乙醇产率峰值、86%的高选择性以及超过100 h的稳定光催化转化,显著超过了大多数先前的报道。我们的工作提出了一种有吸引力的方法,即原位生成和调节羟基自由基水平,用于光催化甲烷转化为多碳产物。