Suppr超能文献

选择性光驱动甲烷氧化制乙醇

Selective light-driven methane oxidation to ethanol.

作者信息

Xue Fei, Zhang Chunyang, Cheng Cheng, Yan Xueli, Liu Feng, Liu Xiaozhi, Jiang Biao, Zhang Qiuyue, Sun Lin, Peng Huiping, Huang Wei-Hsiang, Pao Chih-Wen, Hu Zhiwei, Chen Mingshu, Su Dong, Liu Maochang, Huang Xiaoqing, Xu Yong

机构信息

i-lab of Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, 215123, China.

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.

出版信息

Nat Commun. 2024 Dec 1;15(1):10451. doi: 10.1038/s41467-024-54835-5.

Abstract

Methane (CH) photocatalytic upgrading to value-added chemicals, especially C products, is significant yet challenging due to sluggish energy/mass transfer and insufficient chemical driven-force in single photochemical process. Herein, we realize solar-driven CH oxidation to ethanol (CHOH) on crystalline carbon nitride (CCN) modified with CuS and Cu single atoms (CuS/Cu-CCN). The integration of photothermal effect and photocatalysis overcomes CH-to-CHOH conversion bottlenecks, with CuS as a hotspot to convert solar-energy to heat. In-situ characterizations demonstrate that Cu single atoms play as electron acceptor for O reduction to ·OOH/ · OH, while CuS acts as hole acceptor and site for CH adsorption, C - H activation, and C - C coupling. Theoretical calculations demonstrate that CuS/Cu-CCN reduces C - C coupling energy barrier by stabilizing ·CH and ·CHO. Impressively, CHOH productivity reaches 549.7 μmol g h, with selectivity of 94.8% and apparent quantum efficiency of 0.9% (420 nm). This work provides a sustainable avenue for CH conversion to value-added chemcials.

摘要

将甲烷(CH₄)光催化升级转化为高附加值化学品,尤其是含碳产物,由于单光化学过程中能量/质量传递缓慢以及化学驱动力不足,这一过程意义重大但颇具挑战。在此,我们实现了在硫化铜(CuS)和铜单原子(CuS/Cu-CCN)修饰的晶态氮化碳(CCN)上太阳能驱动的CH₄氧化为乙醇(CH₃CH₂OH)。光热效应和光催化的结合克服了CH₄到CH₃CH₂OH转化的瓶颈,其中CuS作为将太阳能转化为热能的热点。原位表征表明,铜单原子作为电子受体将O₂还原为·OOH/·OH,而CuS作为空穴受体以及CH₄吸附、C-H活化和C-C偶联的位点。理论计算表明,CuS/Cu-CCN通过稳定·CH和·CHO降低了C-C偶联能垒。令人印象深刻的是,CH₃CH₂OH的产率达到549.7 μmol g⁻¹ h⁻¹,选择性为94.8%,表观量子效率为0.9%(420 nm)。这项工作为CH₄转化为高附加值化学品提供了一条可持续的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f94/11609272/8187540242ad/41467_2024_54835_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验