Li Chi, Chen Yong, Li Yuheng, Gong Lijie, Yuan Zhen, Liang Lusheng, Chen Jinglin, Ganesan Paramaguru, Zhang Yixian, Ma Jing, Gao Peng
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China.
Angew Chem Int Ed Engl. 2025 Feb 24;64(9):e202420585. doi: 10.1002/anie.202420585. Epub 2024 Dec 27.
Aromatic linker-constructed self-assembled monolayers (Ar-SAMs) with enlarged dipole moment can modulate the work function of indium tin oxide (ITO), thereby improving hole extraction/transport efficiency. However, the specific role of the aromatic linkers between the polycyclic head and the anchoring groups of SAMs in determining the performance of perovskite solar cells (PSCs) remains unclear. In this study, we developed a series of phenothiazine-based Ar-SAMs to investigate how different aromatic linkers could affect molecular stacking, the regulation of substrate work function, and charge carrier dynamics. When served as hole-selective layers (HSLs) in PSCs and monolithic perovskite/silicon tandem solar cells (P/S-TSCs), we found that the Ar-SAM with naphthalene linker along the 2,6-position axis (β-Nap) could form dense and highly ordered HSLs, enhancing interfacial interactions and favoring optimal energy level alignment with the perovskite films. Using this strategy, the optimized wide-band gap PSCs achieved an impressive power conversion efficiency (PCE) of 21.86 % with negligible hysteresis, utilizing a 1.68 eV perovskite. Additionally, the encapsulated devices demonstrated enhanced stability under damp-heat conditions (ISOS-D-2, 50 % RH, 65 °C) with a T of 1000 hours. Notably, the fabricated P/S-TSCs, based on solution-processed micron-scale textured silicon heterojunction (SHJ) solar cells, achieved an efficiency of 28.89 % while maintaining outstanding reproducibility. This strategy holds significant promise for developing aromatic linking groups to enhance the hole selectivity of SAMs.
具有增大偶极矩的芳族连接体构建的自组装单分子层(Ar-SAMs)可以调节氧化铟锡(ITO)的功函数,从而提高空穴提取/传输效率。然而,SAMs的多环头部与锚定基团之间的芳族连接体在决定钙钛矿太阳能电池(PSC)性能方面的具体作用仍不清楚。在本研究中,我们开发了一系列基于吩噻嗪的Ar-SAMs,以研究不同的芳族连接体如何影响分子堆积、衬底功函数的调节以及电荷载流子动力学。当用作PSC和单片钙钛矿/硅串联太阳能电池(P/S-TSCs)中的空穴选择性层(HSLs)时,我们发现沿2,6-位轴带有萘连接体的Ar-SAM(β-Nap)可以形成致密且高度有序的HSLs,增强界面相互作用并有利于与钙钛矿薄膜实现最佳能级对准。采用这种策略,优化后的宽带隙PSC利用1.68 eV的钙钛矿实现了令人印象深刻的21.86%的功率转换效率(PCE),滞后现象可忽略不计。此外,封装后的器件在湿热条件(ISOS-D-2,50%相对湿度?,65°C)下表现出增强的稳定性,T为1000小时。值得注意的是,基于溶液处理的微米级纹理化硅异质结(SHJ)太阳能电池制造的P/S-TSCs实现了28.89%的效率,同时保持了出色的可重复性。该策略在开发芳族连接基团以增强SAMs的空穴选择性方面具有重大前景。