Suppr超能文献

BUSClean:用于乳腺超声图像预处理和医学人工智能知识提取的开源软件。

BUSClean: Open-source software for breast ultrasound image pre-processing and knowledge extraction for medical AI.

作者信息

Bunnell Arianna, Hung Kailee, Shepherd John A, Sadowski Peter

机构信息

Department of Information and Computer Sciences, University of Hawai'i at Mānoa, Honolulu, HI, United States of America.

University of Hawai'i Cancer Center, Honolulu, HI, United States of America.

出版信息

PLoS One. 2024 Dec 11;19(12):e0315434. doi: 10.1371/journal.pone.0315434. eCollection 2024.

Abstract

Development of artificial intelligence (AI) for medical imaging demands curation and cleaning of large-scale clinical datasets comprising hundreds of thousands of images. Some modalities, such as mammography, contain highly standardized imaging. In contrast, breast ultrasound imaging (BUS) can contain many irregularities not indicated by scan metadata, such as enhanced scan modes, sonographer annotations, or additional views. We present an open-source software solution for automatically processing clinical BUS datasets. The algorithm performs BUS scan filtering (flagging of invalid and non-B-mode scans), cleaning (dual-view scan detection, scan area cropping, and caliper detection), and knowledge extraction (BI-RADS Labeling and Measurement fields) from sonographer annotations. Its modular design enables users to adapt it to new settings. Experiments on an internal testing dataset of 430 clinical BUS images achieve >95% sensitivity and >98% specificity in detecting every type of text annotation, >98% sensitivity and specificity in detecting scans with blood flow highlighting, alternative scan modes, or invalid scans. A case study on a completely external, public dataset of BUS scans found that BUSClean identified text annotations and scans with blood flow highlighting with 88.6% and 90.9% sensitivity and 98.3% and 99.9% specificity, respectively. Adaptation of the lesion caliper detection method to account for a type of caliper specific to the case study demonstrates the intended use of BUSClean in new data distributions and improved performance in lesion caliper detection from 43.3% and 93.3% out-of-the-box to 92.1% and 92.3% sensitivity and specificity, respectively. Source code, example notebooks, and sample data are available at https://github.com/hawaii-ai/bus-cleaning.

摘要

用于医学成像的人工智能(AI)开发需要管理和清理包含数十万张图像的大规模临床数据集。某些模态,如乳腺X线摄影,具有高度标准化的成像。相比之下,乳腺超声成像(BUS)可能包含许多扫描元数据未表明的不规则情况,如增强扫描模式、超声检查人员注释或额外视图。我们提出了一种用于自动处理临床BUS数据集的开源软件解决方案。该算法执行BUS扫描过滤(标记无效和非B模式扫描)、清理(双视图扫描检测、扫描区域裁剪和卡尺检测)以及从超声检查人员注释中提取知识(BI-RADS标记和测量字段)。其模块化设计使用户能够将其应用于新的设置。在一个包含430张临床BUS图像的内部测试数据集上进行的实验表明,在检测每种类型的文本注释时,灵敏度>95%,特异性>98%;在检测具有血流突出显示、替代扫描模式或无效扫描的扫描时,灵敏度和特异性均>98%。对一个完全外部的公共BUS扫描数据集进行的案例研究发现,BUSClean识别文本注释和具有血流突出显示的扫描的灵敏度分别为88.6%和90.9%,特异性分别为98.3%和99.9%。针对案例研究中特定类型的卡尺对病变卡尺检测方法进行调整,证明了BUSClean在新数据分布中的预期用途,并将病变卡尺检测的性能从开箱即用的43.3%和93.3%分别提高到92.1%和92.3%的灵敏度和特异性。源代码、示例笔记本和示例数据可在https://github.com/hawaii-ai/bus-cleaning获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22f8/11633980/22f265460960/pone.0315434.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验