Suppr超能文献

基于多任务学习的超声图像乳腺肿瘤自动分割与分类框架。

A Multi-Task Learning Framework for Automated Segmentation and Classification of Breast Tumors From Ultrasound Images.

机构信息

Vellore Institute of Technology, Chennai, India.

University of Ulster, Londonderry, UK.

出版信息

Ultrason Imaging. 2022 Jan;44(1):3-12. doi: 10.1177/01617346221075769. Epub 2022 Feb 7.

Abstract

Breast cancer is one of the most fatal diseases leading to the death of several women across the world. But early diagnosis of breast cancer can help to reduce the mortality rate. So an efficient multi-task learning approach is proposed in this work for the automatic segmentation and classification of breast tumors from ultrasound images. The proposed learning approach consists of an encoder, decoder, and bridge blocks for segmentation and a dense branch for the classification of tumors. For efficient classification, multi-scale features from different levels of the network are used. Experimental results show that the proposed approach is able to enhance the accuracy and recall of segmentation by , , and classification by , , respectively than the methods available in the literature.

摘要

乳腺癌是导致全球数名女性死亡的最致命疾病之一。但乳腺癌的早期诊断有助于降低死亡率。因此,本工作提出了一种有效的多任务学习方法,用于从超声图像中自动分割和分类乳腺肿瘤。所提出的学习方法包括用于分割的编码器、解码器和桥块,以及用于肿瘤分类的密集分支。为了进行有效的分类,使用了来自网络不同层次的多尺度特征。实验结果表明,与文献中的方法相比,所提出的方法能够分别提高分割的准确性和召回率,, 和分类的准确性和召回率,, 。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ade/8902030/c1fc7609ddbc/10.1177_01617346221075769-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验