Tess David, Harrison Makayla, Lin Jian, Li Rui, Di Li
Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, USA.
Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, Connecticut, USA.
AAPS J. 2024 Dec 12;27(1):13. doi: 10.1208/s12248-024-00987-7.
Accurate prediction of drug-drug interactions (DDI) from in vitro data is important, as it provides insights on clinical DDI risk and study design. Historically, the lower limit of plasma fraction unbound (f) is set at 1% for DDI prediction of highly bound compounds by the regulatory agencies due to the uncertainty of the f measurements. This leads to high false positive DDI predictions for highly bound compounds. The recently published ICH M12 DDI guideline allows the use of experimental f for DDI prediction of highly bound compounds. To further build confidence in DDI prediction of highly bound compounds using experimental f values, we evaluated a set of drugs with f < 1% and clinical DDI > 20% using both basic and mechanistic static models. All the compounds evaluated were flagged for DDI risk with the mechanistic model using experimental f values. There was no false negative DDI prediction. Similarly, using the basic model, the DDI risk of all the compounds was identified except for CYP2D6 inhibition of almorexant. The totality of the data demonstrates that the DDI potential of highly bound compounds can be predicted accurately when actual protein binding numbers are measured.
从体外数据准确预测药物相互作用(DDI)很重要,因为它能为临床DDI风险和研究设计提供见解。从历史上看,由于游离分数(f)测量的不确定性,监管机构将血浆游离分数下限设定为1%,用于预测高结合化合物的DDI。这导致对高结合化合物的DDI预测出现高假阳性。最近发布的ICH M12 DDI指南允许使用实验性f值来预测高结合化合物的DDI。为了进一步增强使用实验性f值对高结合化合物进行DDI预测的信心,我们使用基础模型和机制性静态模型评估了一组游离分数f < 1%且临床DDI > 20%的药物。使用实验性f值,机制性模型将所有评估的化合物都标记为有DDI风险。没有出现假阴性的DDI预测。同样,使用基础模型时,除了阿戈美拉汀对CYP2D6的抑制作用外,所有化合物的DDI风险都被识别出来了。所有数据表明,当测量实际蛋白质结合数值时,可以准确预测高结合化合物的DDI潜力。