Suppr超能文献

深度学习重建在直肠癌分期中的加速T2加权成像:一项初步研究。

Accelerated T2W Imaging with Deep Learning Reconstruction in Staging Rectal Cancer: A Preliminary Study.

作者信息

Zhu Lan, Shi Bowen, Ding Bei, Xia Yihan, Wang Kangning, Feng Weiming, Dai Jiankun, Xu Tianyong, Wang Baisong, Yuan Fei, Shen Hailin, Dong Haipeng, Zhang Huan

机构信息

Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University of Medicine, No.197 Ruijin Er Road, Shanghai, 200025, China.

Department of MR, GE Healthcare, Beijing, China.

出版信息

J Imaging Inform Med. 2025 Aug;38(4):2537-2548. doi: 10.1007/s10278-024-01345-x. Epub 2024 Dec 11.

Abstract

Deep learning reconstruction (DLR) has exhibited potential in saving scan time. There is limited research on the evaluation of accelerated acquisition with DLR in staging rectal cancers. Our first objective was to explore the best DLR level in saving time through phantom experiments. Resolution and number of excitations (NEX) adjusted for different scan time, image quality of conventionally reconstructed T2W images were measured and compared with images reconstructed with different DLR level. The second objective was to explore the feasibility of accelerated T2W imaging with DLR in image quality and diagnostic performance for rectal cancer patients. 52 patients were prospectively enrolled to undergo accelerated acquisition reconstructed with highly-denoised DLR (DLR_H) and conventional reconstruction (ConR). The image quality and diagnostic performance were evaluated by observers with varying experience and compared between protocols using κ statistics and area under the receiver operating characteristic curve (AUC). The phantom experiments demonstrated that DLR_H could achieve superior signal-to-noise ratio (SNR), detail conspicuity, sharpness, and less distortion within the least scan time. The DLR_H images exhibited higher sharpness and SNR than ConR. The agreements with pathological TN-stages were improved using DLR_H images compared to ConR (T: 0.846vs. 0.771, 0.825vs. 0.700, and 0.697vs. 0.512; N: 0.527vs. 0.521, 0.421vs. 0.348 and 0.517vs. 0.363 for junior, intermediate, and senior observes, respectively). Comparable AUCs to identify T3-4 and N1-2 tumors were achieved using DLR_H and ConR images (P > 0.05). Consequently, with 2/3-time reduction, DLR_H images showed improved image quality and comparable TN-staging performance to conventional T2W imaging for rectal cancer patients.

摘要

深度学习重建(DLR)在节省扫描时间方面已展现出潜力。关于在直肠癌分期中使用DLR进行加速采集的评估研究有限。我们的首要目标是通过体模实验探索节省时间的最佳DLR水平。针对不同扫描时间调整分辨率和激励次数(NEX),测量传统重建的T2加权(T2W)图像的图像质量,并与不同DLR水平重建的图像进行比较。第二个目标是探讨在直肠癌患者中使用DLR进行加速T2W成像在图像质量和诊断性能方面的可行性。前瞻性纳入52例患者,使其接受用高去噪DLR(DLR_H)重建的加速采集和传统重建(ConR)。由经验各异的观察者评估图像质量和诊断性能,并使用κ统计量和受试者操作特征曲线下面积(AUC)在两种方案之间进行比较。体模实验表明,DLR_H能够在最短扫描时间内实现卓越的信噪比(SNR)、细节清晰度、锐度且失真更小。DLR_H图像比ConR图像展现出更高的锐度和SNR。与ConR相比,使用DLR_H图像时与病理TN分期的一致性得到改善(T:初级、中级和高级观察者分别为0.846对0.771、0.825对0.700和0.697对0.512;N:分别为0.527对0.521、0.421对0.348和0.517对0.363)。使用DLR_H和ConR图像识别T3 - 4和N1 - 2肿瘤时获得了可比的AUC(P > 0.05)。因此,在扫描时间减少三分之二的情况下,DLR_H图像显示出图像质量的改善以及与传统T2W成像相当的直肠癌患者TN分期性能。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验