Tano Sho, Kotani Tomomi, Ushida Takafumi, Matsuo Seiko, Yoshihara Masato, Imai Kenji, Kinoshita Fumie, Moriyama Yoshinori, Nomoto Masataka, Yoshida Shigeru, Yamashita Mamoru, Kishigami Yasuyuki, Oguchi Hidenori, Kajiyama Hiroaki
Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.
Department of Obstetrics, Perinatal Medical Center, TOYOTA Memorial Hospital, Toyota, Aichi, Japan.
Hypertens Res. 2025 Mar;48(3):884-893. doi: 10.1038/s41440-024-02024-8. Epub 2024 Dec 11.
The growing recognition of the importance of interpregnancy weight management in reducing hypertensive disorders of pregnancy (HDP) underscores the importance of effective preventive strategies. However, developing effective systems remains a challenge. We aimed to bridge this gap by constructing a prediction model. This study retrospectively analyzed the data of 1746 women who underwent two childbirths across 14 medical facilities, including both tertiary and primary facilities. Data from 2009 to 2019 were used to create a derivation cohort (n = 1746). A separate temporal-validation cohort was constructed by adding data between 2020 and 2024 (n = 365). Furthermore, the external-validation cohort was constructed using the data from another tertiary center between 2017 and 2023 (n = 340). We constructed a prediction model for HDP development in the second pregnancy by applying logistic regression analysis using 5 primary clinical information: maternal age, pre-pregnancy body mass index, and HDP history; and pregnancy interval and weight change velocity between pregnancies. Model performance was assessed across all three cohorts. HDP in the second pregnancy occurred 7.3% in the derivation, 10.1% in the temporal-validation, and 7.9% in the external-validation cohorts. This model demonstrated strong discrimination, with c-statistics of 0.86, 0.88, and 0.86 for the respective cohorts. Precision-recall area under the curve values were 0.90, 0.85, and 0.91, respectively. Calibration showed favorable intercepts (-0.02 to -0.00) and slopes (0.96-1.02) for all cohorts. In conclusion, this externally validated model offers a robust basis for personalized interpregnancy weight management goals for women planning future pregnancies.
对孕期体重管理在降低妊娠高血压疾病(HDP)方面重要性的认识不断提高,凸显了有效预防策略的重要性。然而,开发有效的系统仍然是一项挑战。我们旨在通过构建一个预测模型来弥合这一差距。本研究回顾性分析了14家医疗机构(包括三级和基层医疗机构)中1746名经历过两次分娩的女性的数据。使用2009年至2019年的数据创建了一个推导队列(n = 1746)。通过添加2020年至2024年的数据构建了一个单独的时间验证队列(n = 365)。此外,使用另一个三级中心2017年至2023年的数据构建了外部验证队列(n = 340)。我们通过应用逻辑回归分析,使用5项主要临床信息构建了第二次妊娠中HDP发生的预测模型:产妇年龄、孕前体重指数和HDP病史;以及妊娠间隔和两次妊娠之间的体重变化速度。在所有三个队列中评估了模型性能。第二次妊娠中的HDP在推导队列中发生率为7.3%,在时间验证队列中为10.1%,在外部验证队列中为7.9%。该模型显示出很强的区分能力,各队列的c统计量分别为0.86、0.88和0.86。精确召回曲线下面积值分别为0.90、0.85和0.91。校准显示所有队列的截距(-0.02至-0.00)和斜率(0.96 - 1.02)都很理想。总之,这个经过外部验证的模型为计划未来妊娠的女性制定个性化孕期体重管理目标提供了有力依据。