Zhao Ruochen, Lin Junjing, Xu Jing, Liu Guohui, Wang Bingxia, Lin Jianchang
Department of Statistics, Ohio State University, Columbus, OH, USA.
Statistical and Quantitative Sciences, Takeda Pharmaceuticals, Cambridge, MA, USA.
J Biopharm Stat. 2024 Dec 11:1-18. doi: 10.1080/10543406.2024.2434500.
Crossover or treatment-switching in randomized controlled trials presents notable challenges not only in the development and approval of new drugs but also poses a complex issue in their reimbursement, especially in oncology. When the investigational treatment is superior to control, crossover from control to investigational treatment upon disease progression or for other reasons will likely cause the underestimation of treatment benefit. Rank Preserving Structural Failure Time (RPSFT) and Two-Stage Estimation (TSE) methods are commonly employed to adjust for treatment switching by estimating counterfactual survival times. However, these methods may induce informative censoring by adjusting censoring times for switchers while leaving those for non-switchers unchanged. Existing approaches such as re-censoring or inverse probability of censoring weighting (IPCW) are often used alongside RPSFT or TSE to handle informative censoring, but may result in long-term information loss or suffer from model misspecification. In this paper, Kaplan-Meier multiple imputation with bootstrap procedure (KMIB) is proposed to address the informative censoring issues in adjustment methods for treatment switching. This approach can avoid information loss and is robust to model misspecification. In the scenarios that we investigate, simulation studies show that this approach performs better than other adjustment methods when the treatment effect is small, and behave similarly under other scenarios despite different switching probability. A case study in non-small cell lung cancer (NSCLC) is also provided to demonstrate the use of this method.
随机对照试验中的交叉或治疗转换不仅在新药研发和审批中带来显著挑战,而且在其报销方面也构成复杂问题,尤其是在肿瘤学领域。当试验性治疗优于对照时,疾病进展或因其他原因从对照转换为试验性治疗可能会导致对治疗益处的低估。保留秩结构失效时间(RPSFT)和两阶段估计(TSE)方法通常用于通过估计反事实生存时间来调整治疗转换。然而,这些方法可能会通过调整转换者的删失时间而不改变非转换者的删失时间来诱导信息删失。诸如重新删失或删失加权逆概率(IPCW)等现有方法通常与RPSFT或TSE一起用于处理信息删失,但可能会导致长期信息丢失或存在模型设定错误的问题。在本文中,提出了带自助程序的Kaplan-Meier多重填补法(KMIB)来解决治疗转换调整方法中的信息删失问题。这种方法可以避免信息丢失,并且对模型设定错误具有鲁棒性。在我们研究的场景中,模拟研究表明,当治疗效果较小时,该方法比其他调整方法表现更好,并且在其他场景下,尽管转换概率不同,但表现相似。还提供了一个非小细胞肺癌(NSCLC)的案例研究来证明该方法的应用。