Kou Yufang, Liu Minchao, Hou Mengmeng, Zhao Tiancong, Chen Liang, Jia Jia, Zhan Yating, Yan Kui, Wang Boya, Zhang Fan, Zhao Dongyuan, Li Xiaomin
Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433 Shanghai, China.
J Am Chem Soc. 2024 Dec 25;146(51):35493-35503. doi: 10.1021/jacs.4c15819. Epub 2024 Dec 12.
Strongly coupled interfaces in the epitaxial growth heteronanocrystals (HNCs) provide advanced functionalities regarding interface connection, electron transfer, and carrier separation. However, the majority of current nanocomposites primarily focus on a single heterojunction involving only two subunits, which hinders the achievement of optimized synergy energy transfer among more than two components. Herein, ternary NaGdF:Yb,Tm-TiO:F-FeO HNCs with dual-heterojunction were synthesized based on the crystal plane epitaxial growth strategy for boosting near-infrared (NIR)-triggered photo-chemodynamic therapy (PCDT). Fluorine is doped into TiO (TiO:F), which not only enhances the exposure of the (001) facet of TiO for FeO subunit growth but also promotes the growth of the NaGdF:Yb,Tm upconversion nanocrystal (UCNC) subunit, enabling an epitaxial combination of all three components. Upon NIR irradiation, the UCNC subunit transfers the light energy of the absorbed NIR light to the TiO:F subunit, thereby facilitating the generation of electron-hole pairs within TiO:F. Due to different work functions between TiO:F and FeO in the ternary HNCs, electrons tend to transfer from TiO:F into FeO, resulting in a reduction of inactive Fe into active Fe and further enhancing the Fenton-catalysis performance. Simultaneously, the efficient separation of electrons and holes improves the photocatalytic oxidation property induced by TiO:F. Based on ternary UCNC-TiO:F-FeO HNCs boosting Fenton catalysis and photocatalysis at the single particle level, as a proof of concept, we propose a NIR light-triggered PCDT (NIR-PCDT) synergistically enhanced tumor treatment strategy. In vitro and in vivo experiments demonstrate that this NIR-PCDT agent exhibits a pronounced ability to generate reactive oxygen species, effectively inducing apoptosis in tumor cells.
外延生长异质纳米晶体(HNCs)中的强耦合界面在界面连接、电子转移和载流子分离方面提供了先进的功能。然而,目前大多数纳米复合材料主要集中在仅涉及两个亚基的单一异质结上,这阻碍了在两个以上组分之间实现优化的协同能量转移。在此,基于晶面外延生长策略合成了具有双异质结的三元NaGdF:Yb,Tm-TiO:F-FeO HNCs,以促进近红外(NIR)触发的光化学动力疗法(PCDT)。氟被掺杂到TiO(TiO:F)中,这不仅增强了TiO(001)面用于FeO亚基生长的暴露,还促进了NaGdF:Yb,Tm上转换纳米晶体(UCNC)亚基的生长,从而实现了所有三个组分的外延结合。在近红外照射下,UCNC亚基将吸收的近红外光的光能转移到TiO:F亚基,从而促进TiO:F内电子-空穴对的产生。由于三元HNCs中TiO:F和FeO之间的功函数不同,电子倾向于从TiO:F转移到FeO中,导致无活性的Fe还原为活性Fe,并进一步提高芬顿催化性能。同时,电子和空穴的有效分离改善了TiO:F诱导的光催化氧化性能。基于三元UCNC-TiO:F-FeO HNCs在单颗粒水平上增强芬顿催化和光催化,作为概念验证,我们提出了一种近红外光触发的PCDT(NIR-PCDT)协同增强肿瘤治疗策略。体外和体内实验表明,这种NIR-PCDT试剂具有显著的产生活性氧的能力,能有效诱导肿瘤细胞凋亡。