Suppr超能文献

铱石墨烯储氢性能的第一性原理研究。

First-principles study of the hydrogen storage properties of Irida-graphene.

作者信息

Sun Yanhong, Chen Yuhong, Yang Menglin, Zhou Kun, Sun Jialin, Zhao Kongyang, Xu Lai

机构信息

Department of Physics, Lanzhou University of Technology, Lanzhou 730050, P. R. China.

School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China.

出版信息

Phys Chem Chem Phys. 2025 Jan 2;27(2):915-929. doi: 10.1039/d4cp03381g.

Abstract

The hydrogen storage properties of the 2D carbon allotrope Irida-graphene (IG) were investigated using first-principles calculation. The intrinsic IG adsorption energy for H is only -0.06 eV, significantly lower than the effective adsorption threshold. To improve its hydrogen storage capabilities, IG was doped with boron (B) and modified with sodium (Na). It was found that both 2Na@IG and 2Na@BIG systems could adsorb 8 pairs of H. However, the average adsorption energy of H in the 2Na@BIG system (-0.145 eV) is higher compared to that in the 2Na@IG system (-0.134 eV), and the adsorption capacity (14.6 wt%) was superior to that of the 2Na@IG system (14.5 wt%). The introduction of B created an electron-deficient structure (BIG), enhancing electron transfer between Na and the substrate to improve Na binding energy. This enhancement resulted in stronger polarization and orbital hybridization of H within the 2Na@BIG system compared to the 2Na@IG system, further boosting its adsorption performance. The charge transfer between Na and the substrate generated an electric field that polarized H adsorbed around Na, while the electric field generated by the already polarized H further polarizes the H adsorbed in the outer layer. Density of states (DOS) diagrams illustrated orbital hybridization of the H in both systems. Molecular dynamics simulations conducted at room temperature (300 K) demonstrated that the 2Na@BIG system achieved a hydrogen storage capacity of 8.8 wt.%. In conclusion, both 2Na@IG and 2Na@BIG systems exhibit potential as H storage materials, but the 2Na@BIG system displays superior hydrogen storage performance compared to the 2Na@IG system.

摘要

采用第一性原理计算方法研究了二维碳同素异形体铱石墨烯(IG)的储氢性能。H在本征IG上的吸附能仅为-0.06 eV,显著低于有效吸附阈值。为了提高其储氢能力,对IG进行了硼(B)掺杂和钠(Na)改性。结果发现,2Na@IG和2Na@BIG体系均可吸附8对H。然而,2Na@BIG体系中H的平均吸附能(-0.145 eV)高于2Na@IG体系(-0.134 eV),且吸附容量(14.6 wt%)优于2Na@IG体系(14.5 wt%)。B的引入产生了电子缺陷结构(BIG),增强了Na与基底之间的电子转移,从而提高了Na的结合能。这种增强作用使得2Na@BIG体系中H的极化和轨道杂化比2Na@IG体系更强,进一步提升了其吸附性能。Na与基底之间的电荷转移产生了一个电场,该电场使吸附在Na周围的H极化,而已经极化的H产生的电场进一步使外层吸附的H极化。态密度(DOS)图展示了两个体系中H的轨道杂化情况。在室温(300 K)下进行的分子动力学模拟表明,2Na@BIG体系的储氢容量达到了8.8 wt%。总之,2Na@IG和2Na@BIG体系均展现出作为储氢材料的潜力,但2Na@BIG体系的储氢性能优于2Na@IG体系。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验