Xiao Yihao, Yu Yanqing, Huang Xinxi, Chen Da, Li Wanbin
College of Environment and Climate, Jinan University, No. 855, East Xingye Avenue, Panyu District, Guangzhou, 511443, China.
Adv Sci (Weinh). 2025 Feb;12(5):e2413942. doi: 10.1002/advs.202413942. Epub 2024 Dec 12.
Membrane processes are promising for energy-saving industrial applications. However, efficient separation for some valuable gas mixtures with similar characteristics, such as CH/N and O/N, remains extremely challenging. Metal-organic framework (MOF) membranes have been attracting intensive attention for gas sieving, but it is difficult to manufacture MOF membranes in scalability and precisely tune their transport property. In this study, Gel-thermal processing of linker-mixed MOF crystal-glass composite membranes is reported directly, with the mechanism of adjusting metal-linker bond strengths and angles to disrupt long-range periodicity of MOFs and promote glass phase formation, for sharply sorption-preferential gas separation. This strategy can be realized by using a simple, solvent/precursor-less, and cost-effective gel-thermal approach with two steps of gel coating and thermal conversion, thereby constructing crystal-glass composite membranes in a controllable, processable, versatile, and environmentally friendly route. Moreover, the mixed linkers enable preferential gas affinities and the ultramicroporous glasses can eliminate any membrane defects. The membranes exhibit outstanding gas separation performance for the challenging systems of CH/N and O/N, with mixture selectivities up to 9.3 and 9.6, respectively, far exceeding those of polymer, MOF, and mixed-matrix membranes. The study provides an available route for architecting high-performance membranes for gas separations.
膜过程在节能工业应用方面颇具前景。然而,对于一些具有相似特性的有价值气体混合物,如CH₄/N₂和O₂/N₂,进行高效分离仍然极具挑战性。金属有机框架(MOF)膜在气体筛分方面一直备受关注,但难以规模化制造MOF膜并精确调节其传输性能。在本研究中,直接报道了连接体混合的MOF晶体-玻璃复合膜的凝胶-热加工方法,其机制是通过调节金属-连接体键的强度和角度来破坏MOF的长程周期性并促进玻璃相形成,以实现对吸附具有强烈选择性的气体分离。该策略可通过一种简单、无溶剂/前驱体且经济高效的凝胶-热方法来实现,该方法包括凝胶涂覆和热转化两个步骤,从而以可控、可加工、通用且环保的方式构建晶体-玻璃复合膜。此外,混合连接体赋予了对气体的优先亲和力,超微孔玻璃可以消除任何膜缺陷。这些膜对于具有挑战性的CH₄/N₂和O₂/N₂体系表现出出色的气体分离性能,混合物选择性分别高达9.3和9.6,远远超过聚合物膜、MOF膜和混合基质膜。该研究为构建用于气体分离的高性能膜提供了一条可行途径。