Suppr超能文献

机器学习预测经典三叉神经痛经皮球囊压迫治疗反应的放射组学模型

Machine learning to predict radiomics models of classical trigeminal neuralgia response to percutaneous balloon compression treatment.

作者信息

Wu Ji, Qin Chengjian, Zhou Yixuan, Wei Xuanlei, Qin Deling, Chen Keyu, Cai Yuankun, Shen Lei, Yang Jingyi, Xu Dongyuan, Chai Songshan, Xiong Nanxiang

机构信息

Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China.

Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.

出版信息

Front Neurol. 2024 Nov 27;15:1443124. doi: 10.3389/fneur.2024.1443124. eCollection 2024.

Abstract

BACKGROUND

Classic trigeminal neuralgia (CTN) seriously affects patients' quality of life. Percutaneous balloon compression (PBC) is a surgical program for treating trigeminal neuralgia. But some patients are ineffective or relapse after treatment. The aim is to use machine learning to construct clinical imaging models to predict relapse after treatment (PBC).

METHODS

The clinical data and intraoperative balloon imaging data of CTN from January 2017 to August 2023 were retrospectively analyzed. The relationship between least absolute shrinkage and selection operator and random forest prediction of PBC postoperative recurrence, ROC curve and decision -decision curve analysis is used to evaluate the impact of imaging histology on TN recurrence.

RESULTS

Imaging features, like original_shape_Maximum2D, DiameterRow, Original_Shape_Elongation, etc. predict the prognosis of TN on PBC. The areas under roc curve were 0.812 and 0.874, respectively. The area under the ROC curve of the final model is 0.872. DCA and calibration curves show that nomogram has a promising future in clinical application.

CONCLUSION

The combination of machine learning and clinical imaging and clinical information has the good potential of predicting PBC in CTN treatment. The efficacy of CTN is suitable for clinical applications of CTN patients after PBC.

摘要

背景

经典三叉神经痛(CTN)严重影响患者生活质量。经皮球囊压迫术(PBC)是治疗三叉神经痛的一种外科手术方案。但部分患者治疗后无效或复发。目的是利用机器学习构建临床影像模型以预测治疗(PBC)后复发情况。

方法

回顾性分析2017年1月至2023年8月CTN患者的临床资料及术中球囊影像数据。采用最小绝对收缩和选择算子与随机森林预测PBC术后复发的关系,通过ROC曲线及决策曲线分析评估影像组织学对TN复发的影响。

结果

诸如original_shape_Maximum2D、DiameterRow、Original_Shape_Elongation等影像特征可预测TN患者PBC的预后情况。ROC曲线下面积分别为0.812和0.874。最终模型的ROC曲线下面积为0.872。DCA及校准曲线表明列线图在临床应用中有良好前景。

结论

机器学习与临床影像及临床信息相结合在预测CTN治疗中PBC方面具有良好潜力。CTN的疗效适用于PBC术后CTN患者的临床应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b951/11631740/0a8dd2fc4414/fneur-15-1443124-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验