Suppr超能文献

利用迁移学习从术后X光片预测全膝关节置换术失败情况。

Leveraging transfer learning for predicting total knee arthroplasty failure from post-operative radiographs.

作者信息

Corti Anna, Galante Sarah, Rauch Rebecca, Chiappetta Katia, Corino Valentina, Loppini Mattia

机构信息

Department of Electronics, Information and Bioengineering Politecnico di Milano Milan Milan Italy.

Humanitas University, Pieve Emanuele MI Italy.

出版信息

J Exp Orthop. 2024 Dec 11;11(4):e70097. doi: 10.1002/jeo2.70097. eCollection 2024 Oct.

Abstract

PURPOSE

The incidence of both primary and revision total knee arthroplasty (TKA) is expected to rise, making early recognition of TKA failure crucial to prevent extensive revision surgeries. This study aims to develop a deep learning (DL) model to predict TKA failure using radiographic images.

METHODS

Two patient cohorts who underwent primary TKA were retrospectively collected: one was used for the model development and the other for the external validation. Each cohort encompassed failed and non-failed subjects, according to the need for TKA revision surgery. Moreover, for each patient, one anteroposterior and one lateral radiographic view obtained during routine TKA follow-up, were considered. A transfer learning fine-tuning approach was employed. After pre-processing, the images were analyzed using a convolutional neuronal network (CNN) that was originally developed for predicting hip prosthesis failure and was based on the Densenet169 pre-trained on Imagenet. The model was tested on 20% of the images of the first cohort and externally validated on the images of the second cohort. Metrics, such as accuracy, sensitivity, specificity and area under the receiving operating characteristic curve (AUC), were calculated for the final assessment.

RESULTS

The trained model correctly classified 108 out of 127 images in the test set, providing a classification accuracy of 0.85, sensitivity of 0.80, specificity of 0.89 and AUC of 0.86. Moreover, the model correctly classified 1547 out of 1937 in the external validation set, providing a balanced accuracy of 0.79, sensitivity of 0.80, specificity of 0.78 and AUC of 0.86.

CONCLUSIONS

The present DL model predicts TKA failure with moderate accuracy, regardless of the cause of revision surgery. Additionally, the effectiveness of the transfer learning fine-tuning approach, leveraging a previously developed DL model for hip prosthesis failure, has been successfully demonstrated.

LEVEL OF EVIDENCE

Level III, diagnostic study.

摘要

目的

初次及翻修全膝关节置换术(TKA)的发生率预计将会上升,因此早期识别TKA失败对于预防大规模翻修手术至关重要。本研究旨在开发一种深度学习(DL)模型,利用X线影像预测TKA失败。

方法

回顾性收集两个接受初次TKA的患者队列:一个用于模型开发,另一个用于外部验证。根据TKA翻修手术的需要,每个队列都包含失败和未失败的受试者。此外,对于每位患者,考虑在常规TKA随访期间获得的一张前后位和一张侧位X线影像。采用迁移学习微调方法。预处理后,使用最初为预测髋关节假体失败而开发的卷积神经网络(CNN)对图像进行分析,该网络基于在ImageNet上预训练的Densenet169。该模型在第一个队列20%的图像上进行测试,并在第二个队列的图像上进行外部验证。计算准确率、灵敏度、特异性和接受者操作特征曲线下面积(AUC)等指标进行最终评估。

结果

训练后的模型在测试集中正确分类了127张图像中的108张,分类准确率为0.85,灵敏度为0.80,特异性为0.89,AUC为0.86。此外,该模型在外部验证集中正确分类了1937张中的1547张,平衡准确率为0.79,灵敏度为0.80,特异性为0.78,AUC为0.86。

结论

目前的DL模型预测TKA失败具有中等准确率,无论翻修手术的原因如何。此外,利用先前开发的用于髋关节假体失败的DL模型的迁移学习微调方法的有效性已得到成功证明。

证据水平

III级,诊断性研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b02/11633713/90ad4fd01f14/JEO2-11-e70097-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验