Liu Wei, Wang Fan, Wang Anyang, Guo Yuzheng, Yin Huayi, Wang Dihua
International Cooperation Base for Sustainable Utilization of Resources and Energy and School of Resource and Environmental Science, Wuhan University, Wuhan, 430072, China.
Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.
Small. 2025 Feb;21(5):e2411028. doi: 10.1002/smll.202411028. Epub 2024 Dec 12.
Hydrogen evolution reaction (HER) in alkaline electrolytes is considered to be the most promising industry-scale hydrogen (H) production method but is limited to the lack of low-cost, efficient, and stable HER catalysts. Here, a universal and scalable electrodeposition-sulfidization modulation strategy is developed to directly grow the NiS-FeS heterojunction nanoarray on the commercial Ni foam (NiS-FeS@NF). The as-prepared NiS-FeS@NF catalyst only requires a low overpotential of 71 and 270 mV to reach the current density of 10 and 500 mA cm with a long-lasting lifetime of over 200 h. Moreover, the NiS-FeS@NF catalyst can operate at industrial conditions (500 mA cm at 70 °C) for over 200 h stably at a low cell voltage of 1.71 V in an alkaline exchange membrane water electrolysis (AEMWE) device, which indicates a great prospect for practical application. In addition, in situ Raman experiments and density functional theory (DFT) calculations reveal that the downshift of the d-band center and interfacial synergistic actions due to the electron transfer between NiS and FeS reduce the water spitting energy barrier and optimize H/O-containing intermediates absorption, thereby improving the HER intrinsic catalytic activity. This work provides an atomic-level insight into designing efficient HER heterogeneous catalysts.
碱性电解质中的析氢反应(HER)被认为是最具前景的工业规模制氢方法,但由于缺乏低成本、高效且稳定的HER催化剂而受到限制。在此,开发了一种通用且可扩展的电沉积-硫化调制策略,以在商用泡沫镍(NiS-FeS@NF)上直接生长NiS-FeS异质结纳米阵列。所制备的NiS-FeS@NF催化剂仅需71和270 mV的低过电位即可达到10和500 mA cm的电流密度,且具有超过200小时的持久寿命。此外,NiS-FeS@NF催化剂可在工业条件下(70°C时500 mA cm)在碱性交换膜水电解(AEMWE)装置中以1.71 V的低电池电压稳定运行超过200小时,这表明其具有广阔的实际应用前景。此外,原位拉曼实验和密度泛函理论(DFT)计算表明,由于NiS和FeS之间的电子转移导致d带中心下移和界面协同作用,降低了水分解能垒并优化了含H/O中间体的吸附,从而提高了HER本征催化活性。这项工作为设计高效的HER非均相催化剂提供了原子水平的见解。