Suppr超能文献

基于PINN-DDPG的无拖曳卫星测试质量的敏捷控制。

Agile control of test mass based on PINN-DDPG for drag-free satellite.

作者信息

Lian Xiaobin, Liu Suyi, Cao Xuyang, Wang Hongyan, Deng Wudong, Ning Xin

机构信息

School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China.

Shanghai Institute of Satellite Engineering, Shanghai 201109, China.

出版信息

ISA Trans. 2025 Feb;157:306-317. doi: 10.1016/j.isatra.2024.11.049. Epub 2024 Nov 28.

Abstract

Agile control after the release of test mass is related to the success or failure of China's space gravitational wave detection program, such as TianQin and Taiji. In the release process, the test mass's motion state is complex and susceptible to collisions with the satellite cavity. In addition, the release capture control of the test mass uses electrostatic force, which is extremely small. These factors pose a significant challenge to the control system design. For this purpose, this paper proposes a real-time predictive control method for PINN-DDPG based on Physical Information Neural Network (PINN), Long Short-Term Memory (LSTM), and Deep Deterministic Policy Gradient (DDPG) to solve the problem of agile capture control under weak electrostatic force. First, a PINN-LSTM network for real-time state prediction is designed based on PINN and LSTM to solve the problems of interpretability and time-dependent state prediction. Subsequently, a DDPG controller was designed to solve the reinforcement learning control problem in continuous action space. Finally, simulation results demonstrate that, in comparison to the traditional PINN, the PINN-LSTM markedly hastens the training convergence, cutting the time by 60 %. Compared to traditional DDPG control, the PINN-DDPG diminish the stabilization time of position and velocity errors by 70 %.

摘要

测试质量释放后的敏捷控制关系到中国空间引力波探测计划(如天琴计划和太极计划)的成败。在释放过程中,测试质量的运动状态复杂,容易与卫星腔体发生碰撞。此外,测试质量的释放捕获控制采用静电力,其极其微小。这些因素给控制系统设计带来了重大挑战。为此,本文提出了一种基于物理信息神经网络(PINN)、长短期记忆网络(LSTM)和深度确定性策略梯度(DDPG)的PINN-DDPG实时预测控制方法,以解决弱静电力下的敏捷捕获控制问题。首先,基于PINN和LSTM设计了一个用于实时状态预测的PINN-LSTM网络,以解决可解释性和时变状态预测问题。随后,设计了一个DDPG控制器来解决连续动作空间中的强化学习控制问题。最后,仿真结果表明,与传统的PINN相比,PINN-LSTM显著加快了训练收敛速度,将时间缩短了60%。与传统DDPG控制相比,PINN-DDPG将位置和速度误差的稳定时间缩短了70%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验