Suppr超能文献

利用人工神经网络对高产生物柴油藻类潘氏栅藻的咖啡因降解进行建模。

Harnessing artificial neural networks to model caffeine degradation by High-Yield biodiesel algae Desmodesmus pannonicus.

作者信息

Phukan Dixita, Kumar Vipin, Kandulna Wilson, Singh Ankur, Anand Saumya, Pandey Nishant

机构信息

Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India.

Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India.

出版信息

Bioresour Technol. 2025 Feb;418:131935. doi: 10.1016/j.biortech.2024.131935. Epub 2024 Dec 10.

Abstract

In this study, Desmodesmus pannonicus IITISM-DIX2, outperforming Chlorella sorokiniana IITISM-DIX3 in caffeine degradation, was used to develop an artificial neural network (ANN) model for predicting caffeine removal efficiency under varying pH, photoperiods, caffeine, and indole acetic acid (IAA) concentrations. The ANN model, designed with a 4-15-1 multilayer perceptron and trained on 120 data points, achieved high predictive accuracy (R > 0.96) and bias/accuracy factors between 0.95-1.11. Sensitivity analysis identified pH as the most critical factor. IAA enhanced lipid content in Desmodesmus by 91 % in caffeine-containing simulated wastewater. FAME analysis was performed under optimal lipid-producing conditions (10 ppm caffeine, 5 ppm IAA). IAA upregulated key metabolic pathways, increasing secondary metabolites in Desmodesmus and Chlorella. In summary, the modeling results are key for improving system performance, guiding parameter selection to enhance caffeine removal by Desmodesmus. IAA also enhanced resilience and lipid yield, increasing the economic feasibility of caffeine removal and biofuel production.

摘要

在本研究中,在咖啡因降解方面表现优于索氏小球藻IITISM-DIX3的潘诺尼扁藻IITISM-DIX2被用于开发一个人工神经网络(ANN)模型,以预测在不同pH值、光周期、咖啡因和吲哚乙酸(IAA)浓度下的咖啡因去除效率。该ANN模型采用4-15-1多层感知器设计,并在120个数据点上进行训练,具有较高的预测准确性(R>0.96),偏差/准确性因子在0.95-1.11之间。敏感性分析确定pH值为最关键因素。在含咖啡因的模拟废水中,IAA使扁藻中的脂质含量提高了91%。在最佳产脂条件(10 ppm咖啡因,5 ppm IAA)下进行了脂肪酸甲酯(FAME)分析。IAA上调了关键代谢途径,增加了扁藻和小球藻中的次生代谢产物。总之,建模结果对于提高系统性能、指导参数选择以增强扁藻对咖啡因的去除至关重要。IAA还增强了恢复力和脂质产量,提高了去除咖啡因和生物燃料生产的经济可行性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验