Guo Zhen-Hua, Wu Xue-Qian, Wu Ya-Pan, Li Dong-Sheng, Yang Guo-Ping, Wang Yao-Yu
Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China.
College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, No. 8, Daxue Road, Yichang, 443002, P. R. China.
Angew Chem Int Ed Engl. 2025 Feb 3;64(6):e202421992. doi: 10.1002/anie.202421992. Epub 2024 Dec 23.
Efficient separation of acetylene (CH) from carbon dioxide (CO) and ethylene (CH) is a significant challenge in the petrochemical industry due to their similar physicochemical properties. Pore space partition (PSP) has shown promise in enhancing gas adsorption capacity and selectivity by reducing pore size and increasing the density of guest binding sites. Herein, we firstly employ the 2D→3D polycatenation strategy to construct a PSP metal-organic framework (MOF) Ni-dcpp-bpy, incorporating functional N/O sites to enhance CH purification. The polycatenated framework with optimized pore size and regularity, exhibiting significant improvements over traditional PSP MOFs by resolving the critical contradiction of balancing CH uptake (98.5 cm g at 298 K, 100 kPa) and selectivity of CH/CO (3.4), CH/CH (5.9), and CH/CH (96.4) in a MOF. Breakthrough experiments confirm high-purity CH (>99.9 %) and high CH productivity from binary and ternary mixtures. Notably, Ni-dcpp-bpy exhibits excellent water stability, scalability, and regenerability after 20 cycles for separating CH/CO. Theoretical calculations verify that the strong binding of CH is mainly attributed to the C-H⋅⋅⋅O/N interactions between host Ni-dcpp-bpy and guest CH molecules. The polycatenation strategy not only improved industrial CH purification efficiency but also enriched the design diversity of customized MOFs for other gas separation applications.
由于乙炔(CH)、二氧化碳(CO₂)和乙烯(C₂H₄)的物理化学性质相似,在石油化工行业中,从二氧化碳和乙烯中高效分离乙炔是一项重大挑战。孔空间分隔(PSP)通过减小孔径和增加客体结合位点密度,在提高气体吸附容量和选择性方面显示出潜力。在此,我们首次采用二维→三维多链连接策略构建了一种PSP金属有机框架(MOF)Ni-dcpp-bpy,引入功能性N/O位点以增强乙炔纯化效果。具有优化孔径和规整性的多链连接框架,通过解决MOF中平衡乙炔吸附量(298K、100kPa下为98.5 cm³ g⁻¹)与乙炔/二氧化碳(3.4)、乙炔/乙烯(5.9)和乙炔/乙烷(96.4)选择性的关键矛盾,相较于传统PSP MOF有显著改进。突破实验证实了从二元和三元混合物中可获得高纯度乙炔(>99.9%)和高乙炔产率。值得注意的是,Ni-dcpp-bpy在分离乙炔/二氧化碳时,经过20次循环后表现出优异的水稳定性、可扩展性和可再生性。理论计算验证了乙炔的强结合主要归因于主体Ni-dcpp-bpy与客体乙炔分子之间的C-H⋅⋅⋅O/N相互作用。多链连接策略不仅提高了工业乙炔纯化效率,还丰富了用于其他气体分离应用的定制MOF的设计多样性。