Suppr超能文献

图形用户界面测试复用中的语义匹配

Semantic matching in GUI test reuse.

作者信息

Khalili Farideh, Mariani Leonardo, Mohebbi Ali, Pezzè Mauro, Terragni Valerio

机构信息

Northeastern University, Boston, MA USA.

University of Milano - Bicocca, Milan, Italy.

出版信息

Empir Softw Eng. 2024;29(3):70. doi: 10.1007/s10664-023-10406-8. Epub 2024 May 9.

Abstract

Reusing test cases across apps that share similar functionalities reduces both the effort required to produce useful test cases and the time to offer reliable apps to the market. The main approaches to reuse test cases across apps combine different semantic matching and test generation algorithms to migrate test cases across Android apps. In this paper we define a general framework to evaluate the impact and effectiveness of different choices of semantic matching with Test Reuse approaches on migrating test cases across Android apps. We offer a thorough comparative evaluation of the many possible choices for the components of test migration processes. We propose an approach that combines the most effective choices for each component of the test migration process to obtain an effective approach. We report the results of an experimental evaluation on 8,099 GUI events from 337 test configurations. The results attest the prominent impact of semantic matching on test reuse. They indicate that sentence level perform better than word level embedding techniques. They surprisingly suggest a negligible impact of the corpus of documents used for building the word embedding model for the Semantic Matching Algorithm. They provide evidence that semantic matching of events of selected types perform better than semantic matching of events of all types. They show that the effectiveness of overall Test Reuse approach depends on the characteristics of the test suites and apps. The replication package that we make publicly available online (https://star.inf.usi.ch/#/software-data/11) allows researchers and practitioners to refine the results with additional experiments and evaluate other choices for test reuse components.

摘要

在具有相似功能的应用程序之间复用测试用例,既能减少生成有用测试用例所需的工作量,又能缩短向市场推出可靠应用程序的时间。跨应用程序复用测试用例的主要方法是结合不同的语义匹配和测试生成算法,以在安卓应用程序之间迁移测试用例。在本文中,我们定义了一个通用框架,用于评估在安卓应用程序之间迁移测试用例时,不同语义匹配选择与测试复用方法的影响和有效性。我们对测试迁移过程组件的多种可能选择进行了全面的比较评估。我们提出了一种方法,将测试迁移过程每个组件最有效的选择结合起来,以获得一种有效的方法。我们报告了对来自337个测试配置的8099个图形用户界面事件进行实验评估的结果。结果证明了语义匹配对测试复用的显著影响。结果表明,句子级别的效果优于单词级别的嵌入技术。令人惊讶的是,结果表明用于构建语义匹配算法单词嵌入模型的文档语料库的影响可以忽略不计。结果提供了证据,表明所选类型事件的语义匹配比所有类型事件的语义匹配表现更好。结果表明,整体测试复用方法的有效性取决于测试套件和应用程序的特性。我们在网上公开提供的复制包(https://star.inf.usi.ch/#/software-data/11)使研究人员和从业人员能够通过额外的实验来完善结果,并评估测试复用组件的其他选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b491/11636992/2dfa2770244f/10664_2023_10406_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验