Chunsong Bai, Khalid Usman, Binyamin Muhammad Ahsan, Ali Jawad
School of Finance and Mathematics, Huainan Normal University, Huainan 232038, China.
Department of Mathematics, Government College University Faisalabad 38000, Pakistan.
Heliyon. 2024 Jun 19;10(12):e33075. doi: 10.1016/j.heliyon.2024.e33075. eCollection 2024 Jun 30.
The cubic intuitionistic fuzzy set is an expansion of the cubic fuzzy set that displays massive information to demonstrate interval-valued intuitionistic fuzzy sets and intuitionistic fuzzy sets. This increment informs limitations essential in existing frameworks, primarily focusing on the significance of embracing our access for more accurate decisions in compound and unresolved structures. The Schweizer and Sklar (SS) operations are engaged in promoting strong aggregation operators for cubic intuitionistic fuzzy sets through this research. Operators such as cubic intuitionistic fuzzy Schweizer and Sklar power weighted average (CIFSSPWA) and cubic intuitionistic fuzzy Schweizer and Sklar power weighted geometric (CIFSSPWG) are offered that enhance the workability of data aggregation within the cubic intuitionistic fuzzy (CIF) environment when compared to surviving methods. The proposed operators may assist in patient treatment and handling by upgrading decision-making in medical sectors like diabetes care. Moreover, to determine the stability and reliance of the outcomes, sensitivity and comparison studies are richly absorbed by this approach.
立方直觉模糊集是立方模糊集的一种扩展,它能展示大量信息以呈现区间值直觉模糊集和直觉模糊集。这种增量揭示了现有框架中至关重要的局限性,主要聚焦于在复杂和未解决结构中采用我们的方法以做出更准确决策的重要性。通过本研究,施韦泽和斯克拉(SS)运算被用于推广立方直觉模糊集的强聚合算子。提供了诸如立方直觉模糊施韦泽和斯克拉幂加权平均(CIFSSPWA)以及立方直觉模糊施韦泽和斯克拉幂加权几何(CIFSSPWG)等算子,与现有方法相比,这些算子提高了立方直觉模糊(CIF)环境中数据聚合的可操作性。所提出的算子可通过提升糖尿病护理等医疗领域的决策制定来辅助患者治疗与处理。此外,为确定结果的稳定性和可靠性,该方法充分纳入了敏感性和比较研究。