Suppr超能文献

用于热管理的纳米工程多孔二氧化硅

Nanoengineering Porous Silica for Thermal Management.

作者信息

An Lu, Luigi Massimigliano Di, Petit Donald, Hu Yong, Chen Yingjie, Armstrong Jason N, Li Yuguang C, Ren Shenqiang

机构信息

Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States.

Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States.

出版信息

ACS Appl Nano Mater. 2022 Feb 25;5(2):2655-2663. doi: 10.1021/acsanm.1c04354. Epub 2022 Feb 2.

Abstract

Thermal insulation of solid materials originates from the nanoscale porous architectures to regulate thermal management in energy-critical applications from energy-efficient buildings to heat-sensitive energy devices. Here, we show nanoengineering of porous silica materials to control the architecture transition from mesoporous to nanocage networks. A low thermal conductivity of such a porous silica network is achieved at 0.018 W/(m K) while exhibiting a porosity of 92.05%, specific surface area of 504 m/g, and pore volume of 2.37 cm/g after ambient pressure drying. Meanwhile, the crosslinking of the porous silica and ceramic fiber frameworks show a tensile Young's modulus of 2.8 MPa while maintaining high thermal insulation, which provides an effective thermal runway mitigation strategy for rechargeable lithium-ion batteries. The nanoengineering strategy reported here would shed light on achieving superthermal insulation of nanostructures for energy-critical applications.

摘要

固体材料的隔热源于纳米级多孔结构,可在从节能建筑到热敏能量设备等能源关键应用中调节热管理。在此,我们展示了多孔二氧化硅材料的纳米工程,以控制从介孔网络到纳米笼网络的结构转变。这种多孔二氧化硅网络在常压干燥后,热导率低至0.018 W/(m·K),孔隙率为92.05%,比表面积为504 m²/g,孔体积为2.37 cm³/g。同时,多孔二氧化硅和陶瓷纤维框架的交联显示出2.8 MPa的拉伸杨氏模量,同时保持高隔热性能,这为可充电锂离子电池提供了一种有效的热失控缓解策略。本文报道的纳米工程策略将为实现能源关键应用中纳米结构的超隔热提供启示。

相似文献

1
Nanoengineering Porous Silica for Thermal Management.用于热管理的纳米工程多孔二氧化硅
ACS Appl Nano Mater. 2022 Feb 25;5(2):2655-2663. doi: 10.1021/acsanm.1c04354. Epub 2022 Feb 2.
5
Elucidating Mesostructural Effects on Thermal Conductivity for Enhanced Insulation Applications.
Small. 2025 Mar;21(9):e2410872. doi: 10.1002/smll.202410872. Epub 2025 Jan 28.

本文引用的文献

1
An Efficient Strategy for Reinforcing Flexible Ceramic Membranes.一种增强柔性陶瓷膜的有效策略。
Nano Lett. 2021 Nov 24;21(22):9419-9425. doi: 10.1021/acs.nanolett.1c02657. Epub 2021 Nov 3.
2
Phonon-engineered extreme thermal conductivity materials.声子工程极端热导率材料。
Nat Mater. 2021 Sep;20(9):1188-1202. doi: 10.1038/s41563-021-00918-3. Epub 2021 Mar 8.
4
Additive manufacturing of silica aerogels.硅气凝胶的增材制造。
Nature. 2020 Aug;584(7821):387-392. doi: 10.1038/s41586-020-2594-0. Epub 2020 Aug 19.
5
An All-Ceramic, Anisotropic, and Flexible Aerogel Insulation Material.一种全陶瓷、各向异性且柔性的气凝胶隔热材料。
Nano Lett. 2020 May 13;20(5):3828-3835. doi: 10.1021/acs.nanolett.0c00917. Epub 2020 Apr 10.
6
A Hierarchical Mesoporous Insulation Ceramic.一种分级介孔绝缘陶瓷。
Nano Lett. 2020 Feb 12;20(2):1110-1116. doi: 10.1021/acs.nanolett.9b04411. Epub 2020 Jan 3.
10
Hollow-Structured Materials for Thermal Insulation.中空结构材料的隔热性能。
Adv Mater. 2019 Sep;31(38):e1801001. doi: 10.1002/adma.201801001. Epub 2018 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验