An Lu, Luigi Massimigliano Di, Petit Donald, Hu Yong, Chen Yingjie, Armstrong Jason N, Li Yuguang C, Ren Shenqiang
Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States.
Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States.
ACS Appl Nano Mater. 2022 Feb 25;5(2):2655-2663. doi: 10.1021/acsanm.1c04354. Epub 2022 Feb 2.
Thermal insulation of solid materials originates from the nanoscale porous architectures to regulate thermal management in energy-critical applications from energy-efficient buildings to heat-sensitive energy devices. Here, we show nanoengineering of porous silica materials to control the architecture transition from mesoporous to nanocage networks. A low thermal conductivity of such a porous silica network is achieved at 0.018 W/(m K) while exhibiting a porosity of 92.05%, specific surface area of 504 m/g, and pore volume of 2.37 cm/g after ambient pressure drying. Meanwhile, the crosslinking of the porous silica and ceramic fiber frameworks show a tensile Young's modulus of 2.8 MPa while maintaining high thermal insulation, which provides an effective thermal runway mitigation strategy for rechargeable lithium-ion batteries. The nanoengineering strategy reported here would shed light on achieving superthermal insulation of nanostructures for energy-critical applications.
固体材料的隔热源于纳米级多孔结构,可在从节能建筑到热敏能量设备等能源关键应用中调节热管理。在此,我们展示了多孔二氧化硅材料的纳米工程,以控制从介孔网络到纳米笼网络的结构转变。这种多孔二氧化硅网络在常压干燥后,热导率低至0.018 W/(m·K),孔隙率为92.05%,比表面积为504 m²/g,孔体积为2.37 cm³/g。同时,多孔二氧化硅和陶瓷纤维框架的交联显示出2.8 MPa的拉伸杨氏模量,同时保持高隔热性能,这为可充电锂离子电池提供了一种有效的热失控缓解策略。本文报道的纳米工程策略将为实现能源关键应用中纳米结构的超隔热提供启示。