Bai Jieyun, Kang Xue, Wang Weishan, Yang Ziduo, Ou Weiguang, Huang Yuxin, Lu Yaosheng
Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Information Technology, Jinan University, Guangzhou, China.
Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.
Digit Health. 2024 Dec 8;10:20552076241304934. doi: 10.1177/20552076241304934. eCollection 2024 Jan-Dec.
This study aims to address the limitations of current clinical methods in predicting delivery mode by constructing a multimodal neural network-based model. The model utilizes data from a digital twin-empowered labor monitoring system, including computerized cardiotocography (cCTG), ultrasound (US) examination data, and electronic health records (EHRs) of pregnant women.
The model integrates three modalities of data from 105 pregnant women (76 vaginal deliveries and 29 cesarean deliveries) at the Department of Obstetrics and Gynecology of The First Affiliated Hospital of Jinan University, Guangzhou, China. It employs a hybrid architecture of a convolutional neural network (CNN) and bi-directional long short-term memory (BiLSTM) to compress the data into a single feature vector for each patient.
The designed model achieves a cross-validation accuracy of 93.33%, an F1-score of 86.26%, an area under the receiver operating characteristic curve of 97.10%, and a Brier Score of 6.67%. Importantly, while cCTG and EHRs are crucial for labor management, the integration of US imaging data significantly enhances prediction accuracy.
The findings of this study suggest that the developed multimodal model is a promising tool for predicting delivery mode and provides a comprehensive approach to intrapartum maternal and fetal health monitoring. The integration of multi-source data, including real-time information, holds potential for further improving the algorithm's predictive accuracy as the volume of analyzed data increases. This could be highly beneficial for dynamically fusing data from different sources throughout the maternal and fetal health lifecycle, from pregnancy to delivery.
本研究旨在通过构建基于多模态神经网络的模型来解决当前临床方法在预测分娩方式方面的局限性。该模型利用来自数字孪生赋能的产程监测系统的数据,包括计算机化胎心监护(cCTG)、超声(US)检查数据以及孕妇的电子健康记录(EHR)。
该模型整合了中国广州暨南大学附属第一医院妇产科105名孕妇(76例阴道分娩和29例剖宫产)的三种数据模态。它采用卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的混合架构,将数据压缩为每个患者的单个特征向量。
所设计的模型实现了93.33%的交叉验证准确率、86.26%的F1分数、97.10%的受试者工作特征曲线下面积以及6.67%的布里尔分数。重要的是,虽然cCTG和EHR对产程管理至关重要,但超声成像数据的整合显著提高了预测准确率。
本研究结果表明,所开发的多模态模型是预测分娩方式的一个有前景的工具,并为产时母婴健康监测提供了一种全面的方法。随着分析数据量的增加,包括实时信息在内的多源数据整合具有进一步提高算法预测准确率的潜力。这对于在从怀孕到分娩的母婴健康生命周期中动态融合来自不同来源的数据可能非常有益。