Hu Junhui, Cai Hongxiang, Zhang Shiyong, Pei Chuanxun, Wang Zihao
State Grid Ningbo Electric Power Supply Company, Ningbo, Zhejiang, China.
State Grid Ninghai Power Supply Company, Ningbo, Zhejiang, China.
PeerJ Comput Sci. 2024 Apr 30;10:e2023. doi: 10.7717/peerj-cs.2023. eCollection 2024.
The electric power infrastructure is the cornerstone of contemporary society's sustenance and advancement. Within the intelligent electric power financial system, substantial inefficiency and waste in information management persist, leading to an escalating depletion of resources. Addressing diverse objectives encompassing economic, environmental, and societal concerns within the power system helps the study to undertake a comprehensive, integrated optimal design and operational scheduling based on a multiobjective optimization algorithm. This article centers on optimizing the power financial system by considering fuel cost, active network loss, and voltage quality as primary objectives. A mathematical model encapsulates these objectives, integrating equations and inequality constraints and subsequently introducing enhancements to the differential evolutionary algorithm. Adaptive variation and dynamic crossover factors within crossover, variation, and selection operations are integrated to optimize algorithm parameters, specifically catering to the multiobjective optimization of the electric power system. An adaptive grid method and cyclic crowding degree ensure population diversity and control the Pareto front distribution. They experimentally validated the approach and the comparisons conducted against AG-MOPSO, INSGA-II, and NSDE algorithms across standard test functions: ZDT1, ZDT2, ZDT3, and DTLZ4. The convergence evaluation indices for this study's scheme on ZDT1 and ZDT2 are 0.000938 and 0.0034, respectively. Additionally, distribution evaluation indices on ZDT1, ZDT2, ZDT3, and ZDT4 stand at 0.0018, 0.0026, 0.0027, and 0.0009, respectively. These indices indicate a robust convergence and distribution, facilitating the optimization of electric power financial information management and the intelligent handling of the electric power financial system's information, thereby enhancing the allocation of material and financial resources.
电力基础设施是当代社会维持和发展的基石。在智能电力金融系统中,信息管理存在严重的低效和浪费现象,导致资源消耗不断加剧。解决电力系统中包括经济、环境和社会问题在内的各种目标,有助于该研究基于多目标优化算法进行全面、综合的优化设计和运行调度。本文围绕以燃料成本、有功网损和电压质量为主要目标来优化电力金融系统展开。一个数学模型封装了这些目标,整合了方程和不等式约束,随后对差分进化算法进行了改进。在交叉、变异和选择操作中集成自适应变异和动态交叉因子以优化算法参数,特别适用于电力系统的多目标优化。一种自适应网格方法和循环拥挤度确保了种群多样性并控制帕累托前沿分布。他们通过标准测试函数ZDT1、ZDT2、ZDT3和DTLZ4对该方法进行了实验验证,并与AG - MOPSO、INSGA - II和NSDE算法进行了比较。本研究方案在ZDT1和ZDT2上的收敛评估指标分别为0.000938和0.0034。此外,在ZDT1、ZDT2、ZDT3和ZDT4上的分布评估指标分别为0.0018、0.0026、0.0027和0.0009。这些指标表明了强大的收敛性和分布性,有助于优化电力金融信息管理以及对电力金融系统信息进行智能处理,从而提高物质和金融资源的配置。