Suppr超能文献

水力结构的可塑性:河岸树木通过对叶片性状进行基因型特异性调整来应对温度升高。

Plasticity in Hydraulic Architecture: Riparian Trees Respond to Increased Temperatures With Genotype-Specific Adjustments to Leaf Traits.

作者信息

Garthwaite Iris J, Lepp Catherine, Maldonado Zyled S R, Blasini Davis, Grady Kevin C, Gehring Catherine A, Hultine Kevin R, Whitham Thomas G, Allan Gerard J, Best Rebecca J

机构信息

School of Earth and Sustainability Northern Arizona University Flagstaff Arizona USA.

School of Life Sciences Arizona State University Tempe Arizona USA.

出版信息

Ecol Evol. 2024 Dec 12;14(12):e70683. doi: 10.1002/ece3.70683. eCollection 2024 Dec.

Abstract

Climate means and variability are shifting rapidly, leading to mismatches between climate and locally adapted plant traits. Phenotypic plasticity, the ability of a plant to respond to environmental conditions within a lifetime, may provide a buffer for plants to persist under increasing temperature and water stress. We used two reciprocal common gardens across a steep temperature gradient to investigate plasticity in six populations of Fremont cottonwood, an important foundation tree species in arid riparian ecosystems. We investigated two components of leaf hydraulic architecture: Leaf venation and stomatal morphology, both of which regulate leaf water potential and photosynthesis. These traits will likely affect plant performance under climate stressors, but it is unclear whether they are controlled by genetic or environmental factors and whether they respond to the environment in parallel or independent directions. We found that: (1) Populations had divergent responses to a hotter growing environment, increasing or decreasing vein density. (2) Populations showed surprisingly independent responses of venation vs. stomatal traits. (3) As a result of these different responses, plasticity in hydraulic architecture traits was not predictable from historic climate conditions at population source locations and often varied substantially within populations. (4) Hydraulic architecture was clearly linked to growth, with higher vein and stomatal density predicting greater tree growth in the hottest growing environment. However, higher plasticity in these traits did not increase average growth across multiple environments. Thus, populations and genotypes vary in their capacity to adjust their leaf hydraulic architecture and support growth in contrasting environments, but this plasticity is not clearly predictable or beneficial. Identifying genotypes suitable for future conditions will depend on the relative importance of multiple traits and on both evolutionary and ecological responses to changing temperature and water availability.

摘要

气候均值和变率正在迅速变化,导致气候与当地适应的植物性状之间出现不匹配。表型可塑性是指植物在其生命周期内对环境条件作出响应的能力,它可能为植物在温度升高和水分胁迫增加的情况下持续生存提供缓冲。我们利用两个跨越陡峭温度梯度的 reciprocal 共同花园,研究了弗里蒙特杨(Fremont cottonwood)六个种群的可塑性,弗里蒙特杨是干旱河岸生态系统中的一种重要基础树种。我们研究了叶片水力结构的两个组成部分:叶脉和气孔形态,这两者都调节叶片水势和光合作用。这些性状可能会影响植物在气候压力源下的表现,但尚不清楚它们是由遗传因素还是环境因素控制,以及它们对环境的响应是平行的还是独立的方向。我们发现:(1)种群对更炎热的生长环境有不同的反应,叶脉密度增加或减少。(2)种群在叶脉与气孔性状方面表现出惊人的独立反应。(3)由于这些不同的反应,水力结构性状的可塑性无法根据种群源地的历史气候条件预测,并且在种群内部往往有很大差异。(4)水力结构与生长明显相关,在最热的生长环境中,较高的叶脉和气孔密度预示着树木生长更快。然而,这些性状较高的可塑性并没有增加在多种环境下的平均生长。因此,种群和基因型在调整其叶片水力结构以及在不同环境中支持生长的能力方面存在差异,但这种可塑性并不明显可预测或有益。确定适合未来条件的基因型将取决于多个性状的相对重要性以及对温度和水分可利用性变化的进化和生态反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86e6/11637695/093c1c864af5/ECE3-14-e70683-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验