Suppr超能文献

用于滞后单腱导管运动学的经典模型、神经网络模型和混合模型的比较

Comparison of Classical, Neural Network and Hybrid Models for Hysteretic Single-tendon Catheter Kinematics.

作者信息

Wang Yuan, Dupont Pierre E

机构信息

Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.

出版信息

IEEE Robot Autom Lett. 2025 Jan;10(1):96-103. doi: 10.1109/lra.2024.3504321. Epub 2024 Nov 21.

Abstract

While robotic control of catheter motion can improve tip positioning accuracy, hysteresis arising from tendon friction and flexural deformation degrades kinematic modeling accuracy. In this paper, we compare the capabilities of three types of models for representing the forward and inverse kinematic maps of a clinical single-tendon cardiac catheter. Classical hysteresis models, neural networks and hybrid combinations of the two are included. Our results show that modeling accuracy is best when models are trained using motions corresponding to the anticipated clinical motions. For sinusoidal motions, recurrent neural network models provide the best performance. For point-to-point motions, however, a simple backlash model can provide comparable performance to a recurrent neural network.

摘要

虽然导管运动的机器人控制可以提高尖端定位精度,但肌腱摩擦和弯曲变形引起的滞后会降低运动学建模精度。在本文中,我们比较了三种类型的模型在表示临床单肌腱心脏导管的正向和反向运动学映射方面的能力。其中包括经典滞后模型、神经网络以及两者的混合组合。我们的结果表明,当使用与预期临床运动相对应的运动对模型进行训练时,建模精度最佳。对于正弦运动,递归神经网络模型表现最佳。然而,对于点对点运动,一个简单的间隙模型可以提供与递归神经网络相当的性能。

相似文献

本文引用的文献

1
Modeling Tendon-actuated Concentric Tube Robots.肌腱驱动的同心管机器人建模
Int Symp Med Robot. 2023 Apr;2023. doi: 10.1109/ISMR57123.2023.10130176. Epub 2023 May 25.
4
Design and Control of Concentric-Tube Robots.同心管机器人的设计与控制
IEEE Trans Robot. 2010 Apr 1;26(2):209-225. doi: 10.1109/TRO.2009.2035740.
5
Long short-term memory.长短期记忆
Neural Comput. 1997 Nov 15;9(8):1735-80. doi: 10.1162/neco.1997.9.8.1735.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验