Suppr超能文献

通过纳入用于各类非线性数据的动态系统来改进高斯混合模型的无监督学习方法。

Improvement of the Gaussian mixture models' unsupervised learning method through the inclusion of dynamical systems for various types of nonlinear data.

作者信息

Mahjoub Rahim

机构信息

Department of Labor and Technology Education, Farhangian University, Qazvin, Iran.

出版信息

Heliyon. 2024 Jun 25;10(13):e33605. doi: 10.1016/j.heliyon.2024.e33605. eCollection 2024 Jul 15.

Abstract

Gaussian mixture models (GMM) with a modulating dynamical system (DS) approach is an unsupervised learning method, and it can estimate the distribution of given data or encoding trajectories in the input space. In this paper, a series of trajectories is considered for simulation, and the role of tuning parameters in the algorithm for both Gaussian function encoding and behavior of the dynamical system is obtained and compared. This algorithm divides the input space of the data into presupposed local regions and then in each local region of the data employs a dynamical system approach for tracking the major trajectories of the data. In this paper, the influence of the number of the Gaussian function in the GMM approach is investigated and simulated deeply. Furthermore, the influence of the local statistical characteristic of data such as mean or covariance of the data on the training process is discussed, and in these conditions, the effect of tuning parameters as the number of the Gaussian function is explained. Also, all details of the characteristic of DS depend on these tuning parameters, especially when data has more variance or noise, this adjustment should be checked more accurately. So, eventually, we showed in the obtained simulation results that the behavior and location of attractor points in DS on the data distributions and accordingly stability of the DS is getting improved drastically by tuning the number of Gaussian functions accurately.

摘要

采用调制动力系统(DS)方法的高斯混合模型(GMM)是一种无监督学习方法,它可以估计给定数据的分布或输入空间中的编码轨迹。本文考虑了一系列轨迹进行仿真,获得并比较了调谐参数在高斯函数编码算法和动力系统行为中的作用。该算法将数据的输入空间划分为预设的局部区域,然后在数据的每个局部区域采用动力系统方法来跟踪数据的主要轨迹。本文深入研究并仿真了GMM方法中高斯函数数量的影响。此外,还讨论了数据的局部统计特征(如数据的均值或协方差)对训练过程的影响,并在这些条件下解释了作为高斯函数数量的调谐参数的作用。而且,DS特征的所有细节都取决于这些调谐参数,特别是当数据具有更多方差或噪声时,这种调整应该更精确地检查。所以,最终我们在获得的仿真结果中表明,通过精确调整高斯函数的数量,DS中吸引点在数据分布上的行为和位置以及相应的DS稳定性都得到了极大的改善。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cf9/11637209/8a3acfcab1b4/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验