Suppr超能文献

利用多种应激源的转录特征来保护大黄蜂。

Leveraging Transcriptional Signatures of Diverse Stressors for Bumble Bee Conservation.

作者信息

Quinlan Gabriela M, Hines Heather M, Grozinger Christina M

机构信息

Penn State University, Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, University Park, Pennsylvania, USA.

Penn State University, Department of Biology University Park, University Park, Pennsylvania, USA.

出版信息

Mol Ecol. 2025 Feb;34(3):e17626. doi: 10.1111/mec.17626. Epub 2024 Dec 13.

Abstract

Organisms in nature are subjected to a variety of stressors, often simultaneously. Foremost among stressors of key pollinators are pathogens, poor nutrition and climate change. Landscape transcriptomics can be used to decipher the relative role of stressors, provided there are unique signatures of stress that can be reliably detected in field specimens. In this study, we identify biomarkers of bumble bee (Bombus impatiens) responses to key stressors by first subjecting bees to various short-term stressors (cold, heat, nutrition and pathogen challenge) in a laboratory setting and assessing their transcriptome responses. Using random forest classification on this whole transcriptome data, we were able to discriminate each stressor. Our best model (tissue-specific model trained on a subset of important genes) correctly predicted known stressors with 92% accuracy. We then applied this random forest model to wild-caught bumble bees sampled across a heatwave event at two sites in central Pennsylvania, US, expected to differ in baseline temperature and floral resource availability. Transcriptomes of bees sampled during the heat wave's peak showed signatures of heat stress, while bees collected in the relatively cooler morning periods showed signatures of starvation and cold stress. We failed to pick up on signals of heat stress shortly after the heatwave, suggesting this set of biomarkers is more useful for identifying acute stressors than long-term monitoring of chronic, landscape-level stressors. We highlight future directions to fine-tune landscape transcriptomics towards the development of better stress biomarkers that can be used both for conservation and improving understanding of stressor impacts on bees.

摘要

自然界中的生物常常同时受到多种应激源的影响。对于关键传粉者而言,最重要的应激源是病原体、营养不良和气候变化。景观转录组学可用于解读应激源的相对作用,前提是在野外样本中能够可靠地检测到独特的应激特征。在本研究中,我们首先在实验室环境中让蜜蜂遭受各种短期应激源(寒冷、炎热、营养和病原体挑战),并评估它们的转录组反应,以此来识别熊蜂(西方蜜蜂)对关键应激源的生物标志物。利用随机森林分类法对这些全转录组数据进行分析,我们能够区分每种应激源。我们最好的模型(基于重要基因子集训练的组织特异性模型)以92%的准确率正确预测了已知的应激源。然后,我们将这个随机森林模型应用于在美国宾夕法尼亚州中部两个地点热浪事件期间采集的野生熊蜂样本,预计这两个地点的基线温度和花卉资源可用性会有所不同。在热浪高峰期采集的蜜蜂转录组显示出热应激的特征,而在相对较凉爽的早晨采集的蜜蜂则显示出饥饿和冷应激的特征。在热浪过后不久,我们未能检测到热应激信号,这表明这组生物标志物在识别急性应激源方面比长期监测慢性景观水平应激源更有用。我们强调了未来的发展方向,即对景观转录组学进行微调,以开发出更好的应激生物标志物,可用于保护工作以及增进对应激源对蜜蜂影响的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e46e/11754722/fd17211e37d5/MEC-34-e17626-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验