Liu Qun, Wu Zhiqing, Qi Xiwu, Fang Hailing, Yu Xu, Li Li, Chen Zequn, Wu Jie, Gao Yugang, Kai Guoyin, Liang Chengyuan
Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China.
College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China.
Plant Biotechnol J. 2025 Mar;23(3):839-856. doi: 10.1111/pbi.14542. Epub 2024 Dec 13.
Chicoric acid, a phenolic compound derived from plants, exhibits a range of pharmacological activities. Light significantly influences the chicoric acid biosynthesis in Taraxacum mongolicum; however, the transcriptional regulatory network governing this process remains unclear. A combined analysis of the metabolome and transcriptome revealed that blue light markedly enhances chicoric acid accumulation compared to red light. The blue light-sensitive transcription factor ELONGATED HYPOCOTYL5 (HY5) is closely associated with multiple core proteins, transcription factors and chicoric acid synthase genes involved in light signalling. Both in vivo and in vitro experiments demonstrated that TmHY5 directly regulates several chicoric acid biosynthetic genes, including TmPAL3, Tm4CL1 and TmHQT2. Additionally, TmHY5 promotes the accumulation of luteolin and anthocyanins by increasing the expression of TmCHS2 and TmANS2. The E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) forms a protein complex with TmHY5, significantly inhibiting chicoric acid biosynthesis. Blue light inhibits TmCOP1-TmHY5 complex protein formation while enhancing the expression levels of TmCOP1 through TmHY5. Furthermore, TmHY5 elevates the expression levels of TmbZIP1, which indirectly activates Tm4CL1 expression. In vivo, TmCOP1 directly inhibits the expression of the TmHY5-Tm4CL1 complex. Therefore, we speculate that TmCOP1-TmHY5-mediated blue light signalling effectively activates chicoric acid biosynthesis, providing a foundation for the application of blue light supplementation technology in industrial production.
菊苣酸是一种源自植物的酚类化合物,具有一系列药理活性。光照显著影响蒙古蒲公英中菊苣酸的生物合成;然而,调控这一过程的转录调控网络仍不清楚。代谢组学和转录组学的联合分析表明,与红光相比,蓝光显著增强了菊苣酸的积累。蓝光敏感转录因子伸长下胚轴5(HY5)与参与光信号传导的多个核心蛋白、转录因子和菊苣酸合酶基因密切相关。体内和体外实验均表明,TmHY5直接调控多个菊苣酸生物合成基因,包括TmPAL3、Tm4CL1和TmHQT2。此外,TmHY5通过增加TmCHS2和TmANS2的表达促进木犀草素和花青素的积累。E3泛素连接酶组成型光形态建成1(COP1)与TmHY5形成蛋白复合物,显著抑制菊苣酸的生物合成。蓝光抑制TmCOP1-TmHY5复合物蛋白的形成,同时通过TmHY5提高TmCOP1的表达水平。此外,TmHY5提高了TmbZIP1的表达水平,间接激活了Tm4CL1的表达。在体内,TmCOP1直接抑制TmHY5-Tm4CL1复合物的表达。因此,我们推测TmCOP1-TmHY5介导的蓝光信号有效地激活了菊苣酸的生物合成,为蓝光补光技术在工业生产中的应用提供了基础。