Hasanović Mujo, Hrelja Emir, Hajro Anesa Ahatović, Murtić Senad, Durmić-Pašić Adaleta
University of Sarajevo-Institute for Genetic Engineering and Biotechnology, Sarajevo, Bosnia and Herzegovina.
Genomenon, Inc., Ann Arbor, United States.
Pol J Microbiol. 2024 Dec 13;73(4):515-527. doi: 10.33073/pjm-2024-044. eCollection 2024 Dec 1.
Serpentine soils are characterized as a unique environment with low nutrient availability and high heavy metal concentrations, often hostile to many plant species. Even though these unfavorable conditions hinder the growth of various plants, particular vegetation with different adaptive mechanisms thrives undisturbed. One of the main contributors to serpentine adaptation represents serpentine bacteria with plant growth-promoting properties that assemble delicate interactions with serpentine plants. L. is an invasive but adaptive species with phytoremediation potential and demonstrates extraordinary success in this environment. To explore more in-depth the role of plant growth-promoting serpentine bacteria, we isolated them and tested their various plant growth-promoting traits both from the rhizosphere and roots of . Based on the demonstrated plant growth-promoting traits such as siderophore production, phosphate solubilization, nitrogen fixation, indole-3-acetic acid production, and ACC deaminase production, we sequenced overall 25 isolates, 14 from the rhizosphere and 11 from the roots. Although more efficient in exhibiting plant growthpromoting traits, rhizospheric bacteria showed a low rate of diversity in comparison to endophytic bacteria. The majority of the isolates from the rhizosphere belong to , while isolates from the roots exhibited higher diversity with genera and . The capacity of the described bacteria to produce siderophores, solubilize phosphate, and fix nitrogen highlights their central role in enhancing nutrient availability and facilitating adaptation to serpentine soils. The findings highlight the potential significance of serpentine bacteria, particularly , in contributing to the resilience and growth of in serpentine environments.
蛇纹岩土的特点是养分有效性低、重金属浓度高,是一种独特的环境,通常对许多植物物种都不利。尽管这些不利条件阻碍了各种植物的生长,但具有不同适应机制的特定植被仍能不受干扰地茁壮成长。蛇纹岩适应的主要贡献者之一是具有促进植物生长特性的蛇纹岩细菌,它们与蛇纹岩植物形成了微妙的相互作用。L.是一种具有植物修复潜力的入侵但适应性强的物种,在这种环境中表现出非凡的成功。为了更深入地探索促进植物生长的蛇纹岩细菌的作用,我们对它们进行了分离,并测试了它们从[植物名称]的根际和根中获得的各种促进植物生长的特性。基于已证明的促进植物生长的特性,如铁载体产生、磷溶解、固氮、吲哚-3-乙酸产生和ACC脱氨酶产生,我们总共对25个分离株进行了测序,其中14个来自根际,11个来自根。尽管根际细菌在表现促进植物生长的特性方面更有效,但与内生细菌相比,其多样性较低。根际分离株大多属于[属名],而根分离株在[属名1]和[属名2]属中表现出更高的多样性。所述细菌产生铁载体、溶解磷和固氮的能力突出了它们在提高养分有效性和促进[植物名称]适应蛇纹岩土方面的核心作用。研究结果突出了蛇纹岩细菌,特别是[细菌名称],在促进[植物名称]在蛇纹岩环境中的恢复力和生长方面的潜在重要性。