Kingan Arun, Huang Cynthia, Mansley Zachary R, Hill Ryan C, Wang Zhongling, Bock David C, Wang Lei, Ma Lu, Ehrlich Steven N, Bai Jianming, Zhong Hui, Jaye Cherno, Weiland Conan, Marschilok Amy C, Takeuchi Esther S, Zhu Yimei, Yan Shan, Takeuchi Kenneth J
Institute of Energy: Sustainability, Environment, and Equity, Stony Brook University, Stony Brook, New York 11794, United States.
Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States.
ACS Nano. 2024 Dec 24;18(51):34776-34790. doi: 10.1021/acsnano.4c11725. Epub 2024 Dec 13.
Significant demand for lithium-ion batteries necessitates alternatives to Co- and Ni-based cathode materials. Cation-disordered materials using earth-abundant elements are being explored as promising candidates. In this paper, we demonstrate a coprecipitation synthetic approach that allows direct preparation of disordered rocksalt LiFeTiO (r-LFTO·C) and spinel structured hybrid LiFeTiO·C (s-LFTO·C) nanoparticles with a conformal conductive carbon coating. High-angle annular dark-field imaging coupled with electron energy loss spectroscopy mapping shows uniform Fe/Ti distribution with minor compositional variation among particles. Cation disorder was confirmed for both of the materials at an atomic level, with a short-range order more pronounced in r-LFTO·C. Operando X-ray absorption spectroscopy, ex situ hard X-ray photoelectron spectroscopy, ex situ soft X-ray absorption spectroscopy, and ex situ synchrotron X-ray diffraction were used to investigate (de)lithiation in the bulk and at the surface. Structurally, the r-LFTO·C demonstrated reversible partial Fe center migration between octahedral and tetrahedral sites during (de)lithiation. The r-LFTO·C evidenced that the redox of O was coincident with iron redox during initial electrochemical cycling, while iron redox dominated later cycling. In contrast, s-LFTO·C electrochemistry involved iron redox throughout the cycling process. The findings rationalize the differences in the electrochemistry where r-LFTO·C shows higher initial capacity yet poorer capacity retention over a voltage window where O redox can be accessed, while the s-LFTO·C shows lower initial capacity yet improved capacity retention.
对锂离子电池的巨大需求使得钴基和镍基正极材料需要有替代物。使用储量丰富元素的阳离子无序材料正在作为有前景的候选材料被探索。在本文中,我们展示了一种共沉淀合成方法,该方法能够直接制备具有保形导电碳涂层的无序岩盐LiFeTiO(r-LFTO·C)和尖晶石结构的混合LiFeTiO·C(s-LFTO·C)纳米颗粒。高角度环形暗场成像与电子能量损失谱映射相结合显示,颗粒间Fe/Ti分布均匀,成分变化较小。在原子水平上证实了这两种材料都存在阳离子无序,其中r-LFTO·C中的短程有序更为明显。使用原位X射线吸收光谱、非原位硬X射线光电子能谱、非原位软X射线吸收光谱和非原位同步加速器X射线衍射来研究整体和表面的(脱)锂过程。在结构上,r-LFTO·C在(脱)锂过程中表现出八面体和四面体位置之间可逆的部分铁中心迁移。r-LFTO·C证明,在初始电化学循环期间,O的氧化还原与铁的氧化还原同时发生,而在后期循环中,铁的氧化还原占主导。相比之下,s-LFTO·C的电化学在整个循环过程中都涉及铁的氧化还原。这些发现解释了电化学方面的差异,即r-LFTO·C在可进行O氧化还原的电压窗口内显示出较高的初始容量,但容量保持率较差,而s-LFTO·C显示出较低的初始容量,但容量保持率有所提高。