Ma Wenjie, Tang Yakun, Zhang Yue, Li Xiaohui, Liu Lang, Wang Xueting, Cao Yuliang
State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Energy Materials Chemistry, Ministry of Education, College of Chemistry, Xinjiang University Urumqi 830017 Xinjiang China
College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University Wuhan 430072 Hubei China.
Chem Sci. 2025 Jul 21;16(33):15075-15085. doi: 10.1039/d5sc03335g. eCollection 2025 Aug 20.
Anionic and cationic redox chemistries boost the ultrahigh specific capacity of Fe-based disordered rock salt (DRX) LiFeTiO. However, the sluggish kinetics and high O redox activity result in continuous capacity decay and poor rate performance. Herein, 3D hierarchical porous LiFeTiO (H-Ca-LFT) with initial Li-deficiency is successfully prepared using an acid-assisted CaCO template method. By introducing Li deficiency, the local electronic structure of LiFeTiO is modulated to facilitate Li diffusion and regulate the redox activity. Specifically, Li deficiency reduces the density of states in the O 2p band, Li diffusion barrier, and band gap, thereby suppressing the high activity of oxygen and improving transport dynamics and electron conductivity. Moreover, the 3D hierarchical porous structure provides abundant channels and active sites for ion diffusion and electrochemical reaction. The synergistic effect of Li deficiency and the 3D hierarchical porous structure is revealed by various / characterizations and DFT calculations, which promotes cationic redox and stabilizes anionic redox. Consequently, H-Ca-LFT demonstrates a high initial capacity (209.3 mA h g at 50 mA g), remarkable rate capability (130.4 mA h g at 1 A g), and outstanding long-term cycling stability. This work offers a new insight into stabilizing anionic redox through the design of initial Li deficiency and 3D hierarchical porous architecture for high-performance DRX cathodes.
阴离子和阳离子氧化还原化学提升了铁基无序岩盐(DRX)LiFeTiO的超高比容量。然而,缓慢的动力学和高氧氧化还原活性导致容量持续衰减和倍率性能不佳。在此,采用酸辅助CaCO模板法成功制备了具有初始锂缺陷的三维分级多孔LiFeTiO(H-Ca-LFT)。通过引入锂缺陷,调节了LiFeTiO的局部电子结构,以促进锂扩散并调节氧化还原活性。具体而言,锂缺陷降低了O 2p带中的态密度、锂扩散势垒和带隙,从而抑制了氧的高活性,改善了传输动力学和电子导电性。此外,三维分级多孔结构为离子扩散和电化学反应提供了丰富的通道和活性位点。通过各种表征和密度泛函理论(DFT)计算揭示了锂缺陷与三维分级多孔结构的协同效应,该效应促进了阳离子氧化还原并稳定了阴离子氧化还原。因此,H-Ca-LFT表现出高初始容量(50 mA g时为209.3 mA h g)、出色的倍率性能(1 A g时为130.4 mA h g)和优异的长期循环稳定性。这项工作为通过设计初始锂缺陷和三维分级多孔结构来稳定阴离子氧化还原以用于高性能DRX阴极提供了新的见解。