Suppr超能文献

基于模糊算法识别过渡细胞以推断单细胞转录组学中的细胞轨迹

Fuzzy-Based Identification of Transition Cells to Infer Cell Trajectory for Single-Cell Transcriptomics.

作者信息

Chen Xiang, Ma Yibing, Shi Yongle, Zhang Bai, Wu Hanwen, Gao Jie

机构信息

School of Science, Jiangnan University, Wuxi, China.

出版信息

J Comput Biol. 2025 Mar;32(3):253-273. doi: 10.1089/cmb.2023.0432. Epub 2024 Dec 13.

Abstract

With the continuous evolution of single-cell RNA sequencing technology, it has become feasible to reconstruct cell development processes using computational methods. Trajectory inference is a crucial downstream analytical task that provides valuable insights into understanding cell cycle and differentiation. During cell development, cells exhibit both stable and transition states, which makes it challenging to accurately identify these cells. To address this challenge, we propose a novel single-cell trajectory inference method using fuzzy clustering, named scFCTI. By introducing fuzzy clustering and quantifying cell uncertainty, scFCTI can identify transition cells within unstable cell states. Moreover, scFCTI can obtain refined cell classification by characterizing different cell stages, which gain more accurate single-cell trajectory reconstruction containing transition paths. To validate the effectiveness of scFCTI, we conduct experiments on five real datasets and four different structure simulation datasets, comparing them with several state-of-the-art trajectory inference methods. The results demonstrate that scFCTI outperforms these methods by successfully identifying unstable cell clusters and obtaining more accurate cell paths with transition states. Especially the experimental results demonstrate that scFCTI can reconstruct the cell trajectory more precisely.

摘要

随着单细胞RNA测序技术的不断发展,利用计算方法重建细胞发育过程已变得可行。轨迹推断是一项关键的下游分析任务,为理解细胞周期和分化提供了有价值的见解。在细胞发育过程中,细胞表现出稳定状态和过渡状态,这使得准确识别这些细胞具有挑战性。为应对这一挑战,我们提出了一种使用模糊聚类的新型单细胞轨迹推断方法,名为scFCTI。通过引入模糊聚类并量化细胞不确定性,scFCTI可以在不稳定的细胞状态中识别过渡细胞。此外,scFCTI可以通过表征不同的细胞阶段获得精细的细胞分类,从而获得包含过渡路径的更准确的单细胞轨迹重建。为验证scFCTI的有效性,我们在五个真实数据集和四个不同结构的模拟数据集上进行了实验,并将它们与几种先进的轨迹推断方法进行了比较。结果表明,scFCTI通过成功识别不稳定细胞簇并获得具有过渡状态的更准确细胞路径,优于这些方法。特别是实验结果表明,scFCTI可以更精确地重建细胞轨迹。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验