Suppr超能文献

细胞自主计时驱动脊椎动物体节时钟的波模式。

Cell-autonomous timing drives the vertebrate segmentation clock's wave pattern.

作者信息

Rohde Laurel A, Bercowsky-Rama Arianne, Valentin Guillaume, Naganathan Sundar Ram, Desai Ravi A, Strnad Petr, Soroldoni Daniele, Oates Andrew C

机构信息

Institute of Bioengineering, Swiss Federal Institute of Technology in Lausanne EPFL, Lausanne, Switzerland.

Department of Cell and Developmental Biology, University College London, London, United Kingdom.

出版信息

Elife. 2024 Dec 13;13:RP93764. doi: 10.7554/eLife.93764.

Abstract

Rhythmic and sequential segmentation of the growing vertebrate body relies on the segmentation clock, a multi-cellular oscillating genetic network. The clock is visible as tissue-level kinematic waves of gene expression that travel through the presomitic mesoderm (PSM) and arrest at the position of each forming segment. Here, we test how this hallmark wave pattern is driven by culturing single maturing PSM cells. We compare their cell-autonomous oscillatory and arrest dynamics to those we observe in the embryo at cellular resolution, finding similarity in the relative slowing of oscillations and arrest in concert with differentiation. This shows that cell-extrinsic signals are not required by the cells to instruct the developmental program underlying the wave pattern. We show that a cell-autonomous timing activity initiates during cell exit from the tailbud, then runs down in the anterior-ward cell flow in the PSM, thereby using elapsed time to provide positional information to the clock. Exogenous FGF lengthens the duration of the cell-intrinsic timer, indicating extrinsic factors in the embryo may regulate the segmentation clock via the timer. In sum, our work suggests that a noisy cell-autonomous, intrinsic timer drives the slowing and arrest of oscillations underlying the wave pattern, while extrinsic factors in the embryo tune this timer's duration and precision. This is a new insight into the balance of cell-intrinsic and -extrinsic mechanisms driving tissue patterning in development.

摘要

正在生长的脊椎动物身体的节律性和顺序性分割依赖于分割时钟,这是一个多细胞振荡遗传网络。该时钟表现为基因表达的组织水平运动波,其穿过前体中胚层(PSM)并在每个形成节段的位置停止。在这里,我们通过培养单个成熟的PSM细胞来测试这种标志性波型是如何被驱动的。我们将它们的细胞自主振荡和停止动态与我们在胚胎中以细胞分辨率观察到的进行比较,发现在振荡的相对减慢和与分化一致的停止方面存在相似性。这表明细胞不需要外部信号来指导波型背后的发育程序。我们表明,一种细胞自主计时活动在细胞从尾芽退出时启动,然后在PSM中向前流动的细胞中逐渐减弱,从而利用经过的时间为时钟提供位置信息。外源性FGF延长了细胞内定时器的持续时间,表明胚胎中的外部因素可能通过定时器调节分割时钟。总之,我们的工作表明,一个有噪声的细胞自主内在定时器驱动了波型背后振荡的减慢和停止,而胚胎中的外部因素调节了这个定时器的持续时间和精度。这是对发育中驱动组织模式形成的细胞内在和外在机制平衡的新见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7f5/11643631/61751ad878bb/elife-93764-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验