Suppr超能文献

通过机器学习增强运动想象脑电信号解码:近期进展的系统综述

Enhancing motor imagery EEG signal decoding through machine learning: A systematic review of recent progress.

作者信息

Hameed Ibtehaaj, Khan Danish M, Ahmed Syed Muneeb, Aftab Syed Sabeeh, Fazal Hammad

机构信息

Department of Telecommunications Engineering, NED University of Engineering and Technology, Karachi, Pakistan.

Department of Computing and Information Systems, School of Engineering and Technology, Sunway University, Petaling Jaya, Selangor, 47500, Malaysia.

出版信息

Comput Biol Med. 2025 Feb;185:109534. doi: 10.1016/j.compbiomed.2024.109534. Epub 2024 Dec 12.

Abstract

This systematic literature review explores the intersection of neuroscience and deep learning in the context of decoding motor imagery Electroencephalogram (EEG) signals to enhance the quality of life for individuals with motor disabilities. Currently, the most used non-invasive method for measuring brain activity is the EEG, due to its high temporal resolution, user-friendliness, and safety. A Brain Computer Interface (BCI) framework can be made using these signals which can provide a new communication channel to people that are suffering from motor disabilities or other neurological disorders. However, implementing EEG-based BCI systems in real-world scenarios for motor imagery recognition presents challenges, primarily due to the inherent variability among individuals and low signal-to-noise ratio (SNR) of EEG signals. To assist researchers in navigating this complex problem, a comprehensive review article is presented, summarizing the key findings from relevant studies since 2017. This review primarily focuses on the datasets, preprocessing methods, feature extraction techniques, and deep learning models employed by various researchers. This review aims to contribute valuable insights and serve as a resource for researchers, practitioners, and enthusiasts interested in the combination of neuroscience and deep learning, ultimately hoping to contribute to advancements that bridge the gap between the human mind and machine interfaces.

摘要

本系统文献综述探讨了神经科学与深度学习在解码运动想象脑电图(EEG)信号以提高运动障碍患者生活质量背景下的交叉点。目前,由于脑电图具有高时间分辨率、用户友好性和安全性,它是测量大脑活动最常用的非侵入性方法。可以利用这些信号构建一个脑机接口(BCI)框架,为患有运动障碍或其他神经疾病的人提供一种新的交流渠道。然而,在现实场景中实现基于脑电图的BCI系统用于运动想象识别存在挑战,主要原因是个体之间存在固有的变异性以及脑电图信号的低信噪比(SNR)。为了帮助研究人员应对这一复杂问题,本文呈现了一篇全面的综述文章,总结了自2017年以来相关研究的主要发现。本综述主要关注不同研究人员所采用的数据集、预处理方法、特征提取技术和深度学习模型。本综述旨在提供有价值的见解,并为对神经科学与深度学习结合感兴趣的研究人员、从业者和爱好者提供参考资源,最终希望为弥合人类思维与机器接口之间差距的进展做出贡献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验