Liu Yuanbo, Ji Kaiyue, Wang Xi, Shi Qiujin, Li An-Zhen, Yin Zhuoqun, Zhu Yu-Quan, Duan Haohong
Department of Chemistry, Tsinghua University, 100084, Beijing, China.
Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, 435002, Huangshi, China.
Angew Chem Int Ed Engl. 2025 Feb 10;64(7):e202419178. doi: 10.1002/anie.202419178. Epub 2024 Dec 23.
Selective electrocatalytic hydrogenation (ECH) of phenol is a sustainable route to produce cyclohexanone, an industrially important feedstock for polymer synthesis. However, attaining high selectivity and faradaic efficiency (FE) for cyclohexanone remain challenging, owning to over-hydrogenation of phenol to cyclohexanol and competition of hydrogen evolution reaction (HER). Herein, by employing hydrogen spillover effect, we modulate adsorbed hydrogen species (H) coverage on Pt surface via migration to TiO in an anatase TiO-supported Pt catalyst. In ECH of phenol, a high selectivity (94 %) and good FE (63 %) for cyclohexanone are obtained, showing more advantageous performance compared with previous reports. Cyclic voltammetry (CV) tests and electrochemical Raman spectroscopy reveal that H migrated from Pt to TiO. We propose that TiO-induced hydrogen spillover contributes to low H coverage over Pt, which effectively hinders over-hydrogenation of cyclohexanone and HER. We establish a scaling relationship between the intensity of hydrogen spillover and cyclohexanone selectivity by varying the types of anatase TiO, and show the universality of the strategy over other reducible metal oxides as the support (rutile TiO, CeO and WO). This work showcases an effective strategy for tuning hydrogenation selectivity in electro-catalysis, by taking advantage of thermo-catalytically well-documented hydrogen spillover effect.
苯酚的选择性电催化加氢(ECH)是生产环己酮的一条可持续途径,环己酮是聚合物合成中一种重要的工业原料。然而,要实现对环己酮的高选择性和法拉第效率(FE)仍然具有挑战性,这是由于苯酚过度加氢生成环己醇以及析氢反应(HER)的竞争。在此,通过利用氢溢流效应,我们在锐钛矿型TiO负载的Pt催化剂中,通过向TiO迁移来调节Pt表面吸附的氢物种(H)的覆盖度。在苯酚的ECH中,获得了对环己酮的高选择性(94%)和良好的FE(63%),与之前的报道相比表现出更优越的性能。循环伏安法(CV)测试和电化学拉曼光谱表明H从Pt迁移到了TiO。我们提出,TiO诱导的氢溢流导致Pt上的H覆盖度较低,这有效地阻碍了环己酮的过度加氢和HER。通过改变锐钛矿型TiO的类型,我们建立了氢溢流强度与环己酮选择性之间的标度关系,并展示了该策略在其他可还原金属氧化物作为载体(金红石型TiO、CeO和WO)上的通用性。这项工作展示了一种通过利用热催化中已充分记录的氢溢流效应来调节电催化加氢选择性的有效策略。