Liu Kai, Yin Congcong, Gao Jinglin, Wang Yong
School of Energy and Environment, Southeast University, Nanjing, 211189, Jiangsu, P. R. China.
Angew Chem Int Ed Engl. 2025 Mar 17;64(12):e202422333. doi: 10.1002/anie.202422333. Epub 2025 Jan 3.
Producing crystalline covalent organic framework (COF) films is intimately related to the elusive nucleation and growth processes, which is desirable for efficient molecular transport. Rational control over these processes and insights into the mechanisms are crucial to improve synthetic methodology and achieve COF films with regular channels. Here, we report the controllable synthesis of COF films via the temperature-swing strategy and explore their crystallization from monomer assemblies to film formation. A detailed time-dependent study reveals that COF crystallites preferentially coalesce at low temperature, progressing from assembled nanospheres to continuous films through lateral and vertical interactions. Moreover, appropriately elevating the synthesis temperature promotes crystal growth and eliminate the defects of weakly crystalline regions, contributing to highly crystalline and porous COF film with a surface area of 746 m g. The prepared COF composite membrane exhibits a methanol permeance of 79 L m h bar, which is 4.5 times higher than the weakly crystalline counterpart. In addition, the molecular sieving test recognize great membrane selectivity to discriminate the antibiotic mixture with a high separation factor of 15.4. This work offers a feasible way for the rational design of the synthesis environment, enabling access to highly crystalline framework materials for targeting molecular separations.
制备结晶共价有机框架(COF)薄膜与难以捉摸的成核和生长过程密切相关,而这对于高效的分子传输是非常理想的。对这些过程进行合理控制并深入了解其机制对于改进合成方法以及获得具有规则通道的COF薄膜至关重要。在此,我们报道了通过变温策略可控合成COF薄膜,并探索了它们从单体聚集体到薄膜形成的结晶过程。一项详细的时间依赖性研究表明,COF微晶在低温下优先聚结,通过横向和垂直相互作用从组装的纳米球发展为连续薄膜。此外,适当提高合成温度可促进晶体生长并消除弱结晶区域的缺陷,从而得到具有746 m² g表面积的高结晶度和多孔性的COF薄膜。所制备的COF复合膜表现出79 L m⁻² h⁻¹ bar⁻¹的甲醇渗透率,比弱结晶的对应物高4.5倍。此外,分子筛分测试表明该膜具有很高的选择性,能够以15.4的高分离因子区分抗生素混合物。这项工作为合理设计合成环境提供了一种可行的方法,能够获得用于靶向分子分离的高结晶度框架材料。