Haghi Hossein, Yaali Mahshid, Exner Agata A, Kolios Michael C
Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital and Toronto Metropolitan University, 209 Victoria St, Toronto, Ontario, Canada.
Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital and Toronto Metropolitan University, 209 Victoria St, Toronto, Ontario, Canada.
Ultrason Sonochem. 2025 Jan;112:107170. doi: 10.1016/j.ultsonch.2024.107170. Epub 2024 Dec 5.
This study presents an experimental investigation of the influence of MB concentration on the resonance frequency of lipid-coated microbubbles (MBs). Expanding on theoretical models and numerical simulations from previous research, this work experimentally investigates the effect of MB size on the rate of resonance frequency increase with concentration, a phenomenon observed across MBs with two different lipid compositions: propylene glycol (PG) and propylene glycol and glycerol (PGG). Employing a custom-designed ultrasound attenuation measurement setup, we measured the frequency-dependent attenuation of MBs, isolating MBs based on size to generate distinct monodisperse sub-populations for analysis. The resonance frequency of MBs was determined by identifying the attenuation peak in the broadband attenuation ultrasound attenuation measurements. Our experimental findings confirm that larger MBs (≈2.1μm) demonstrate a more significant shift in resonance frequency (≈ 5 MHz, ≈ 40%) as a function of MB concentration. In contrast, smaller MBs (≈1.3μm) show a minor shift in the resonant frequency (≈ 1.8 MHz, ≈ 8%), underlining the importance of size in determining acoustic behavior compared to changes in the lipid shell properties. Additionally, we observed that resonance frequency increase with concentration reaching a saturation point at higher concentrations. This plateau occurs at higher concentrations for larger MBs (≈2.1μm), while smaller MBs (≈1.6μm and ≈1.3μm) reach this saturation point at lower concentrations. Furthermore, the study highlights the small effect of bubble-bubble interactions on the resonance frequency of MB populations, particularly at lower MB concentrations and for smaller MBs. This insight is important for applications utilizing MB clusters, such as contrast-enhanced ultrasound imaging and MB-mediated therapies. While both size and lipid shell composition influence resonance frequency, MB size has a more significant effect. In conclusion, our findings affirm the need to consider both MB size and concentration when utilizing MBs for clinical and industrial ultrasonic applications.
本研究对微泡(MB)浓度对脂质包被微泡共振频率的影响进行了实验研究。在先前研究的理论模型和数值模拟基础上进行拓展,本工作通过实验研究了MB尺寸对共振频率随浓度增加速率的影响,这一现象在具有两种不同脂质组成的微泡中均有观察到:丙二醇(PG)和丙二醇与甘油(PGG)。我们采用定制设计的超声衰减测量装置,测量了微泡的频率依赖性衰减,根据尺寸分离微泡以生成不同的单分散亚群进行分析。微泡的共振频率通过在宽带衰减超声衰减测量中识别衰减峰值来确定。我们的实验结果证实,较大的微泡(≈2.1μm)在共振频率上表现出更显著的偏移(≈5MHz,≈40%),这是微泡浓度的函数。相比之下,较小的微泡(≈1.3μm)在共振频率上表现出较小的偏移(≈1.8MHz,≈8%),这突出了尺寸在决定声学行为方面相对于脂质壳性质变化的重要性。此外,我们观察到共振频率随浓度增加,并在较高浓度时达到饱和点。对于较大的微泡(≈2.1μm),该平台出现在较高浓度时,而较小的微泡(≈1.6μm和≈1.3μm)在较低浓度时达到该饱和点。此外,该研究强调了气泡 - 气泡相互作用对微泡群体共振频率的影响较小,特别是在较低微泡浓度和较小微泡情况下。这一见解对于利用微泡簇的应用,如超声造影成像和微泡介导的治疗,具有重要意义。虽然尺寸和脂质壳组成都会影响共振频率,但微泡尺寸的影响更为显著。总之,我们的研究结果表明,在将微泡用于临床和工业超声应用时,需要同时考虑微泡尺寸和浓度。