Suppr超能文献

靶向线粒体动力学:一种有前景的脑出血治疗方法。

Targeting mitochondrial dynamics: A promising approach for intracerebral hemorrhage therapy.

作者信息

Liu Mengnan, Li Binru, Yin Zhixue, Yin Lu, Luo Ye, Zeng Qi, Zhang Dechou, Wu Anguo, Chen Li

机构信息

Department of Cardiovascular Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, Sichuan, China.

Department of Neurology, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China.

出版信息

Life Sci. 2025 Jan 15;361:123317. doi: 10.1016/j.lfs.2024.123317. Epub 2024 Dec 12.

Abstract

Intracerebral hemorrhage (ICH) is a major global health issue with high mortality and disability rates. Following ICH, the hematoma exerts direct pressure on brain tissue, and blood entering the brain directly damages neurons and the blood-brain barrier. Subsequently, oxidative stress, inflammatory responses, apoptosis, brain edema, excitotoxicity, iron toxicity, and metabolic dysfunction around the hematoma further exacerbate brain tissue damage, leading to secondary brain injury (SBI). Mitochondria, essential for energy production and the regulation of oxidative stress, are damaged after ICH, resulting in impaired ATP production, excessive reactive oxygen species (ROS) generation, and disrupted calcium homeostasis, all of which contribute to SBI. Therefore, a central factor in SBI is mitochondrial dysfunction. Mitochondrial dynamics regulate the shape, size, distribution, and quantity of mitochondria through fusion and fission, both of which are crucial for maintaining their function. Fusion repairs damaged mitochondria and preserves their health, while fission helps mitochondria adapt to cellular stress and removes damaged mitochondria through mitophagy. When this balance is disrupted following ICH, mitochondrial dysfunction worsens, oxidative stress and metabolic failure are exacerbated, ultimately contributing to SBI. Targeting mitochondrial dynamics offers a promising therapeutic approach to restoring mitochondrial function, reducing cellular damage, and improving recovery. This review explores the latest research on modulating mitochondrial dynamics and highlights its potential to enhance outcomes in ICH patients.

摘要

脑出血(ICH)是一个重大的全球健康问题,死亡率和致残率都很高。脑出血后,血肿直接压迫脑组织,进入大脑的血液直接损害神经元和血脑屏障。随后,血肿周围的氧化应激、炎症反应、细胞凋亡、脑水肿、兴奋性毒性、铁毒性和代谢功能障碍进一步加剧脑组织损伤,导致继发性脑损伤(SBI)。线粒体对于能量产生和氧化应激调节至关重要,在脑出血后会受到损伤,导致ATP生成受损、活性氧(ROS)过度产生以及钙稳态破坏,所有这些都促成了继发性脑损伤。因此,继发性脑损伤的一个核心因素是线粒体功能障碍。线粒体动力学通过融合和裂变来调节线粒体的形状、大小、分布和数量,这两者对于维持线粒体功能都至关重要。融合修复受损的线粒体并保持其健康,而裂变则帮助线粒体适应细胞应激并通过线粒体自噬清除受损的线粒体。脑出血后这种平衡被打破时,线粒体功能障碍会恶化,氧化应激和代谢衰竭会加剧,最终导致继发性脑损伤。针对线粒体动力学提供了一种有前景的治疗方法,可恢复线粒体功能、减少细胞损伤并改善恢复情况。本综述探讨了调节线粒体动力学的最新研究,并强调了其改善脑出血患者预后的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验