Carnazzo Valeria, Pignalosa Stefano, Tagliaferro Marzia, Gragnani Laura, Zignego Anna Linda, Racco Cosimo, Di Biase Luigi, Basile Valerio, Rapaccini Gian Ludovico, Di Santo Riccardo, Niccolini Benedetta, Marino Mariapaola, De Spirito Marco, Gigante Guido, Ciasca Gabriele, Basile Umberto
Dipartimento di Patologia Clinica, Ospedale Santa Maria Goretti, A.U.S.L. Latina, 04100 Latina, Italy.
Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy.
Clin Biochem. 2025 Jan;135:110861. doi: 10.1016/j.clinbiochem.2024.110861. Epub 2024 Dec 13.
Novel circulating markers for the non-invasive staging of chronic liver disease (CLD) are in high demand. Although underutilized, extracellular matrix (ECM) components offer significant diagnostic potential. This study evaluates ECM-related markers in hepatitis C virus (HCV)-positive patients across varying fibrosis stages.
Sixty-eight patients with mild-to-moderate fibrosis (F1-F2), sixty-six with advanced fibrosis (F3-F4), and thirty healthy donors were recruited. Inclusion criteria were detectable HCV-RNA and no other liver diseases or co-infections. Levels of ECM markers-hyaluronic acid (HA), laminin (LN), collagen-III N-peptide (PIIIP N-P), collagen-IV (C-IV)-along with cholylglycine (CG) and Golgi protein-73 (GP73), were measured in serum using the MAGLUMI 800 CLIA platform.
Levels of LN, HA, C-IV, PIIIP N-P (p < 0.001), and GP73 (p < 0.01) increased from controls to F1-F2 and F3-F4. CG levels were higher in pathological subjects compared to controls (p < 0.001), but no significant differences emerged between fibrosis stages. These trends persisted after adjusting for age and sex. A multivariate ordinal regression identified LN, PIIIP N-P, and C-IV as promising markers, with an accuracy of 0.77. An XGBoost model improved accuracy to 0.87 and enhanced other metrics. SHAP analysis confirmed these variables as key contributors to the model's predictions.
This study underscores the potential of ECM biomarkers, particularly LN, PIIIP N-P, and C-IV, in non-invasively staging CLD. Furthermore, our preliminary data suggest that a machine learning approach, combined with explainable AI, could further enhance diagnostic accuracy, potentially reducing the need for invasive biopsies.
对于慢性肝病(CLD)的非侵入性分期,新型循环标志物的需求很大。细胞外基质(ECM)成分虽未得到充分利用,但具有显著的诊断潜力。本研究评估了不同纤维化阶段的丙型肝炎病毒(HCV)阳性患者中与ECM相关的标志物。
招募了68例轻度至中度纤维化(F1 - F2)患者、66例重度纤维化(F3 - F4)患者和30名健康供体。纳入标准为可检测到HCV - RNA且无其他肝脏疾病或合并感染。使用MAGLUMI 800 CLIA平台检测血清中ECM标志物——透明质酸(HA)、层粘连蛋白(LN)、III型胶原N肽(PIIIP N - P)、IV型胶原(C - IV),以及胆酰甘氨酸(CG)和高尔基体蛋白73(GP73)的水平。
从对照组到F1 - F2和F3 - F4组,LN、HA、C - IV、PIIIP N - P(p < 0.001)和GP73(p < 0.01)水平升高。与对照组相比,病理受试者的CG水平更高(p < 0.001),但纤维化阶段之间无显著差异。在调整年龄和性别后,这些趋势仍然存在。多变量有序回归确定LN、PIIIP N - P和C - IV为有前景的标志物,准确率为0.77。XGBoost模型将准确率提高到0.87,并改善了其他指标。SHAP分析证实这些变量是模型预测的关键因素。
本研究强调了ECM生物标志物,特别是LN、PIIIP N - P和C - IV,在CLD非侵入性分期中的潜力。此外,我们的初步数据表明,机器学习方法与可解释的人工智能相结合,可以进一步提高诊断准确性,可能减少侵入性活检的需求。